Cryptosporidium
“In recent years, Cryptosporidium has come to be regarded as one of the most important waterborne human pathogens in developed countries. Over 30 outbreaks associated with drinking water have beenreported in North America and Britain, with the largest infecting an estimated 403,000 people (Mackenzieet al. 1994). Recent research has led to improved methods for testing water for the presence of humaninfectious species, although such tests remain technically demanding and relatively expensive.
Cryptosporidium is an obligate parasite with a complex life cycle that involves intracellular development in the gut wall, with sexual and asexual reproduction. Thick-walled oocysts, shed in faeces are responsible for transmission. Concentrations of oocysts as high as 14,000 per litre in raw sewage and 5,800 per litre in surface water have been reported (Madore et al. 1987). Oocysts are robust and can survive for weeks to months in fresh water under cold conditions (King and Monis 2007).
There are a number of species of Cryptosporidium, with C. hominis and C. parvum identified as the main causes of disease (cryptosporidiosis) in humans. C. hominis appears to be confined to human hosts, while the C. parvum strains that infect humans also occur in cattle and sheep. C. parvum infection sare particularly common in young animals, and it has been reported that infected calves can excrete up to 10 billion oocysts in one day. Waterborne outbreaks of cryptosporidiosis have been attributed to inadequate or faulty treatment and contamination by human or livestock (particularly cattle) waste.
C. hominis and C. parvum can be distinguished from one another and from other Cryptosporidium species by a number of genotyping methods. Infectivity tests using cell culture techniques have also been developed. Consumption of contaminated drinking water is only one of several mechanisms by which transmission (faecal-oral) can occur. Recreational waters, including swimming pools, are an important source of cryptosporidiosis and direct contact with a human carrier is also a common route of transmission.Transmission of Cryptosporidium can also occur by contact with infected farm animals, and occasionally through contaminated food.” ADWG 2011
Giardia
“Although known as a human parasite for 200 years, Giardia has been regarded seriously as an agent of disease only since the 1960s. It has been identified as an important waterborne pathogen, and linked to many outbreaks of illness associated with drinking water, particularly in North America. Although the importance of this organism has been established, there are large gaps in knowledge about it, and there are no tests for identifying the presence of human infectious species in water.
Giardia has a relatively simple life cycle involving two stages: a flagellate that multiplies in the
intestine, and an infective thick-walled cyst that is shed intermittently but in large numbers in faeces. Concentrations of cysts as high as 88,000 per litre in raw sewage and 240 per litre in surface water havebeen reported (Wallis et al. 1996). Giardia is typically present in larger numbers in Australian sewagethan Cryptsoporidium. Cysts are robust and can survive for weeks to months in fresh water.
There are a number of species of Giardia, but human infections (giardiasis) are usually assigned to one, G. intestinalis (= G. lamblia and G. duodenalis). G. intestinalis infections have been reported from domestic and wild animals, but the host range of human infectious species is uncertain. Although substantial advances have been made in the sampling and counting of cysts, there are currently no established methods to identify human infectious organisms in water. Waterborne outbreaks of giardiasis have generally been linked to consumption of untreated or unfiltered surface water and contamination with human waste.
Consumption of contaminated drinking water is only one of several mechanisms by which transmission (faecal-oral) can occur. Recreational waters, including swimming pools, are also emerging as an important source of giardiasis. However, excluding outbreaks, by far the most likely route of transmission is by direct contact with a human carrier. Transmission of Giardia can also occur by contact with infected animals and occasionally through contaminated food.” ADWG 2011