2011 April: Warrnambool Anabaena circinalis, Microcystis sp.
7 April 2011-11 April 2011. Warrnambool. Anabaena circinalis-2500 cells/mL and Microcystis sp.–150 cells/mL. Warrnambool, Koroit and Allansford (Warrnambool system)
Warrnambool (Victoria) – Lead
The highest recorded lead level 2005-11 in Victoria was recorded in the central Victorian community of Koriot 0.094mg/L (Wannon Water 2006/7), Gordon Lead 0.065mg/L (Central Highlands Water 8 October 2008), Camperdown 0.049mg/L (2006/7), Port Fairy 0.047mg/L (2006/7), Warrnambool 0.036mg/L (2005/6). The highest Melbourne level was recorded in the eastern suburbs of Melbourne at Mitcham 2007/8 at 0.028mg/L.
The Australian Drinking Water Guideline for Lead is 0.01mg/L
“… Lead can be present in drinking water as a result of dissolution from natural sources, or from household plumbing systems containing lead. These may include lead in pipes, or in solder used to seal joints. The amount of lead dissolved will depend on a number of factors including pH, water hardness and the standing time of the water.
Lead is the most common of the heavy metals and is mined widely throughout the world. It is used in the production of lead acid batteries, solder, alloys, cable sheathing, paint pigments, rust inhibitors, ammunition, glazes and plastic stabilisers. The organo-lead compounds tetramethyl and tetraethyl lead are used extensively as anti-knock and lubricating compounds in gasoline…
Lead can be absorbed by the body through inhalation, ingestion or placental transfer. In adults,
approximately 10% of ingested lead is absorbed but in children this figure can be 4 to 5 times higher. After absorption, the lead is distributed in soft tissue such as the kidney, liver, and bone marrow where it has a biological half-life in adults of less than 40 days, and in skeletal bone where it can persist for 20 to 30 years.
In humans, lead is a cumulative poison that can severely affect the central nervous system. Infants, fetuses and pregnant women are most susceptible. Placental transfer of lead occurs in humans as early as the 12th week of gestation and continues throughout development.
Many epidemiological studies have been carried out on the effects of lead exposure on the intellectual development of children. Although there are some conflicting results, on balance the studies demonstrate that exposure to lead can adversely affect intelligence.
These results are supported by experiments using young primates, where exposure to lead causes significant behavioural and learning difficulties of the same type as those observed in children.
Other adverse effects associated with exposure to high amounts of lead include kidney damage, interference with the production of red blood cells, and interference with the metabolism of calcium needed for bone formation…” ADWG 2011
Warrnambool – Victoria – Turbidity
2011/12: Warrnambool (Victoria) – Turbidity 7.2 NTU (Maximum detection during year)
Chlorine-resistant pathogen reduction: Where filtration alone is used as the water treatment
process to address identified risks from Cryptosporidium and Giardia, it is essential
that filtration is optimised and consequently the target for the turbidity of water leaving
individual filters should be less than 0.2 NTU, and should not exceed 0.5 NTU at any time
Disinfection: A turbidity of less than 1 NTU is desirable at the time of disinfection with
chlorine unless a higher value can be validated in a specific context.
Aesthetic: Based on aesthetic considerations, the turbidity should not exceed 5 NTU at the
consumer’s tap.
Warrnambool (Victoria) – Ammonia
2011/12: Warrnambool (Victoria) – Ammonia 0.84mg/L (Highest level only – Ammonia as N)
Based on aesthetic considerations (corrosion of copper pipes and fittings), the concentration
of ammonia (measured as ammonia) in drinking water should not exceed 0.5 mg/L.
No health-based guideline value is set for ammonia. (0.41mg/L mg of Ammonia as N)
“…Most uncontaminated source waters have ammonia concentrations below 0.2 mg/L. High concentrations (greater than 10 mg/L) have been reported where water is contaminated with animal waste. Ammonia is unlikely to be detected in chlorinated supplies as it reacts quickly with free chlorine. Ammonia in water can result in the corrosion of copper pipes and fittings, causing copper stains on sanitary ware. It is also a food source for some microorganisms, and can support nuisance growths of bacteria and algae, often with a resultant increase in the nitrite concentration.” ADWG 2011
Warrnambool (Victoria) – Aluminium
According to the ADWG, no health guideline has been adopted for Aluminium, but that the issue is still open to review. Aluminium can come from natural geological sources or from the use of aluminium salts as coagulants in water treatment plants. According to the ADWG “A well-operated water filtration plant (even using aluminium as a flocculant) can achieve aluminium concentrations in the finished water of less than 0.1 mg/L.
The most common form of aluminium in water treatment plants is Aluminium Sulfate (Alum). Alum can be supplied as a bulk liquid or in granular form. It is used at water treatment plants as a coagulant to remove turbidity, microorganisms, organic matter and inorganic chemicals. If water is particularly dirty an Alum dose of as high as 500mg/L could occur. There is also concern that other metals may also exist in refined alum.
While the ADWG mentions that there is considerable evidence that Aluminium is neurotoxic and can pass the gut barrier to accumulate in the blood, leading to a condition called encephalopathy (dialysis dementia) and that Aluminium has been associated with Parkinsonism dementia and amyotrophic lateral sclerosis, the NHMRC, whilst also acknowledging studies which have linked Aluminium with Alzheimer disease, has not granted Aluminium a NOEL (No Observable Effect Level) due to insufficient and contradictory data. Without a NOEL, a health guideline cannot be established. The NHMRC has also stated that if new information comes to hand, a health guideline may be established in the future.
In communication with Aluminium expert Dr Chris Exley (Professor in Bioinorganic Chemistry
The Birchall Centre, Lennard-Jones Laboratories, Keele University, Staffordshire UK) in March 2013 regarding high levels of Aluminium detected in the South Western Victorian town of Hamilton
“It is my opinion that any value above 0.5 mg/L is totally unacceptable and a potential health risk. Where such values are maintained over days, weeks or even months, as indeed is indicated by the data you sent to me, these represent a significant health risk to all consumers. While consumers may not experience any short term health effects the result of longer term exposure to elevated levels of aluminium in potable waters may be a significant increase in the body burden of aluminium in these individuals. This artificially increased body burden will not return to ‘normal’ levels when the Al content of the potable water returns to normal but will act as a new platform level from which the Al body burden will continue to increase with age.