Cora Lynn (Victoria) – Lead
The first event was due to a high lead result received as part of routine sampling in the Cora Lynn locality on 13 August 2013. A sample was tested for iron and as part of the metals test, a lead result is also produced. The lead result was 0.017mg/L. This sample tap was located on a meter supplying a private extension (PE), so is not representative of water in the supply system. Only one customer is supplied by the private extension and they had not been using water in the three months prior to testing. Due to the water sitting stagnant for a long time, there was corrosion in the meter and associated pipework causing the elevated result. A resample, taken on 16 August 2013, showed lead levels less than the detection limit (<0.001mg/L). Thesample tap has been relocated to a more representative location.
Based on health considerations, the concentration of lead in drinking water should not
exceed 0.01 mg/L.
“… Lead can be present in drinking water as a result of dissolution from natural sources, or from household plumbing systems containing lead. These may include lead in pipes, or in solder used to seal joints. The amount of lead dissolved will depend on a number of factors including pH, water hardness and the standing time of the water.
Lead is the most common of the heavy metals and is mined widely throughout the world. It is used in the production of lead acid batteries, solder, alloys, cable sheathing, paint pigments, rust inhibitors, ammunition, glazes and plastic stabilisers. The organo-lead compounds tetramethyl and tetraethyl lead are used extensively as anti-knock and lubricating compounds in gasoline…
Lead can be absorbed by the body through inhalation, ingestion or placental transfer. In adults,
approximately 10% of ingested lead is absorbed but in children this figure can be 4 to 5 times higher. After absorption, the lead is distributed in soft tissue such as the kidney, liver, and bone marrow where it has a biological half-life in adults of less than 40 days, and in skeletal bone where it can persist for 20 to 30 years.
In humans, lead is a cumulative poison that can severely affect the central nervous system. Infants, fetuses and pregnant women are most susceptible. Placental transfer of lead occurs in humans as early as the 12th week of gestation and continues throughout development.
Many epidemiological studies have been carried out on the effects of lead exposure on the intellectual development of children. Although there are some conflicting results, on balance the studies demonstrate that exposure to lead can adversely affect intelligence.
These results are supported by experiments using young primates, where exposure to lead causes significant behavioural and learning difficulties of the same type as those observed in children.
Other adverse effects associated with exposure to high amounts of lead include kidney damage, interference with the production of red blood cells, and interference with the metabolism of calcium needed for bone formation…” ADWG 2011
Cora Lynn (Victoria) – Colour
2007/8: Cora Lynn (Victoria) – Colour Apparent 19 HU (Highest Level Only)
2016/17: Cora Lynn (Victoria) – Colour Apparent 36 HU (Highest Level Only)
Based on aesthetic considerations, true colour in drinking water should not exceed 15 HU.
“… Colour is generally related to organic content, and while colour derived from natural sources such as humic and fulvic acids is not a health consideration, chlorination of such water can produce a variety of chlorinated organic compounds as by-products (see Section 6.3.2 on disinfection by-products). If the colour is high at the time of disinfection, then the water should be checked for disinfection by-products. It should be noted, however, that low colour at the time of disinfection does not necessarily mean that the concentration of disinfection by-products will be low…
Cora Lynn – Victoria – Turbidity
2008/9: Cora Lynn (Victoria) – Turbidity 39 NTU (Maximum detection during year)
Chlorine-resistant pathogen reduction: Where filtration alone is used as the water treatment
process to address identified risks from Cryptosporidium and Giardia, it is essential
that filtration is optimised and consequently the target for the turbidity of water leaving
individual filters should be less than 0.2 NTU, and should not exceed 0.5 NTU at any time
Disinfection: A turbidity of less than 1 NTU is desirable at the time of disinfection with
chlorine unless a higher value can be validated in a specific context.
Aesthetic: Based on aesthetic considerations, the turbidity should not exceed 5 NTU at the
consumer’s tap.