Walpole (Western Australia) – Aluminium

2007/08: Walpole (Western Australia) Aluminium 0.56mg/L (Highest Level Only)
 
 
Australian Guideline: Aluminium 0.2mg/L
 
 

According to the ADWG, no health guideline has been adopted for Aluminium, but that the issue is still open to review. Aluminium can come from natural geological sources or from the use of aluminium salts as coagulants in water treatment plants. According to the ADWG “A well-operated water filtration plant (even using aluminium as a flocculant) can achieve aluminium concentrations in the finished water of less than 0.1 mg/L.

The most common form of aluminium in water treatment plants is Aluminium Sulfate (Alum). Alum can be supplied as a bulk liquid or in granular form. It is used at water treatment plants as a coagulant to remove turbidity, microorganisms, organic matter and inorganic chemicals. If water is particularly dirty an Alum dose of as high as 500mg/L could occur. There is also concern that other metals may also exist in refined alum.

While the ADWG mentions that there is considerable evidence that Aluminium is neurotoxic and can pass the gut barrier to accumulate in the blood, leading to a condition called encephalopathy (dialysis dementia) and that Aluminium has been associated with Parkinsonism dementia and amyotrophic lateral sclerosis, the NHMRC, whilst also acknowledging studies which have linked Aluminium with Alzheimer disease, has not granted Aluminium a NOEL (No Observable Effect Level) due to insufficient and contradictory data. Without a NOEL, a health guideline cannot be established. The NHMRC has also stated that if new information comes to hand, a health guideline may be established in the future.

In communication with Aluminium expert Dr Chris Exley (Professor in Bioinorganic Chemistry
The Birchall Centre, Lennard-Jones Laboratories, Keele University, Staffordshire UK) in March 2013 regarding high levels of Aluminium detected in the South Western Victorian town of Hamilton
“It is my opinion that any value above 0.5 mg/L is totally unacceptable and a potential health risk. Where such values are maintained over days, weeks or even months, as indeed is indicated by the data you sent to me, these represent a significant health risk to all consumers. While consumers may not experience any short term health effects the result of longer term exposure to elevated levels of aluminium in potable waters may be a significant increase in the body burden of aluminium in these individuals. This artificially increased body burden will not return to ‘normal’ levels when the Al content of the potable water returns to normal but will act as a new platform level from which the Al body burden will continue to increase with age.

Walpole  (Western Australia) – Colour

2007/08: Walpole (Western Australia) – Colour 16 TCU (Highest Level Only)

Based on aesthetic considerations, true colour in drinking water should not exceed 15 HU.

“… Colour is generally related to organic content, and while colour derived from natural sources such as humic and fulvic acids is not a health consideration, chlorination of such water can produce a variety of chlorinated organic compounds as by-products (see Section 6.3.2 on disinfection by-products). If the colour is high at the time of disinfection, then the water should be checked for disinfection by-products. It should be noted, however, that low colour at the time of disinfection does not necessarily mean that the concentration of disinfection by-products will be low…

2017/18 – Walpole (Western Australia) – Silica

2017/18 Walpole (Western Australia) Silica 92mg/L (max), 72.5mg/L (mean) (listed as Silicon in Water Corporation Water Quality Report 2017-18)

To minimise an undesirable scale build up on surfaces, silica (SiO2) within drinking waters should not exceed 80 mg/L.
GENERAL DESCRIPTION
Silica present in water is usually referred to as amorphous silica (i.e. lacking any crystalline structure). When silica is dissolved within water it forms monosilicic acid:
SiO2 + 2H2O à Si(OH)4
When the concentrations of monosilicic acid increase, polymerisation of the silica occurs, forming polysilicic acids followed by formation of colloidal silica. Monosilicic acid and polysilicic acids are the forms of silica analysed when determining dissolved silica content.
The deposition of silica from solutions can occur via various mechanisms. The deposition of silica that can cause the most problems for the water industry is via silica’s ability to deposit on solid surfaces that have hydroxyl (OH) groups present. Surfaces that commonly have hydroxyl groups present are glass and metallic surfaces. For example, dissolved silica will react with the surfaces of glass and begin to form a white precipitate. The silica forms silicates on the surface, resulting in silica build-up. In cases where customer complaints occur due to scale build-up, water hardness and silica concentrations should be investigated to determine the cause.
Silica can be a problem in water treatment due to its ability to cause fouling of reverse osmosis (RO) membranes (Sheikholeslami and Tan, 1999, Ning 2002, Sahachaiyunta and Sheikholeslami 2002). This occurs when the dissolved silica of the concentrate becomes super-saturated, causing silicates to form in the presence of metals, and these deposit on the membrane surface. The silicate then dehydrates, forming hard layers on the membrane that reduce the effectiveness of the process… 2011 ADWG

2007/8 + 2017/18 – Walpole (Western Australia) – Aluminium, Colour, Silica

Walpole (Western Australia) – Aluminium

2007/08: Walpole (Western Australia) Aluminium 0.56mg/L (Highest Level Only)
Australian Guideline: Aluminium 0.2mg/L

According to the ADWG, no health guideline has been adopted for Aluminium, but that the issue is still open to review. Aluminium can come from natural geological sources or from the use of aluminium salts as coagulants in water treatment plants. According to the ADWG “A well-operated water filtration plant (even using aluminium as a flocculant) can achieve aluminium concentrations in the finished water of less than 0.1 mg/L.

The most common form of aluminium in water treatment plants is Aluminium Sulfate (Alum). Alum can be supplied as a bulk liquid or in granular form. It is used at water treatment plants as a coagulant to remove turbidity, microorganisms, organic matter and inorganic chemicals. If water is particularly dirty an Alum dose of as high as 500mg/L could occur. There is also concern that other metals may also exist in refined alum.

While the ADWG mentions that there is considerable evidence that Aluminium is neurotoxic and can pass the gut barrier to accumulate in the blood, leading to a condition called encephalopathy (dialysis dementia) and that Aluminium has been associated with Parkinsonism dementia and amyotrophic lateral sclerosis, the NHMRC, whilst also acknowledging studies which have linked Aluminium with Alzheimer disease, has not granted Aluminium a NOEL (No Observable Effect Level) due to insufficient and contradictory data. Without a NOEL, a health guideline cannot be established. The NHMRC has also stated that if new information comes to hand, a health guideline may be established in the future.

In communication with Aluminium expert Dr Chris Exley (Professor in Bioinorganic Chemistry
The Birchall Centre, Lennard-Jones Laboratories, Keele University, Staffordshire UK) in March 2013 regarding high levels of Aluminium detected in the South Western Victorian town of Hamilton
“It is my opinion that any value above 0.5 mg/L is totally unacceptable and a potential health risk. Where such values are maintained over days, weeks or even months, as indeed is indicated by the data you sent to me, these represent a significant health risk to all consumers. While consumers may not experience any short term health effects the result of longer term exposure to elevated levels of aluminium in potable waters may be a significant increase in the body burden of aluminium in these individuals. This artificially increased body burden will not return to ‘normal’ levels when the Al content of the potable water returns to normal but will act as a new platform level from which the Al body burden will continue to increase with age.

Walpole  (Western Australia) – Colour

2007/08: Walpole (Western Australia) – Colour 16 TCU (Highest Level Only)

Based on aesthetic considerations, true colour in drinking water should not exceed 15 HU.

“… Colour is generally related to organic content, and while colour derived from natural sources such as humic and fulvic acids is not a health consideration, chlorination of such water can produce a variety of chlorinated organic compounds as by-products (see Section 6.3.2 on disinfection by-products). If the colour is high at the time of disinfection, then the water should be checked for disinfection by-products. It should be noted, however, that low colour at the time of disinfection does not necessarily mean that the concentration of disinfection by-products will be low…

2017/18 – Walpole (Western Australia) – Silica

2017/18 Walpole (Western Australia) Silica 92mg/L (max), 72.5mg/L (mean) (listed as Silicon in Water Corporation Water Quality Report 2017-18)

To minimise an undesirable scale build up on surfaces, silica (SiO2) within drinking waters should not exceed 80 mg/L.
GENERAL DESCRIPTION
Silica present in water is usually referred to as amorphous silica (i.e. lacking any crystalline structure). When silica is dissolved within water it forms monosilicic acid:
SiO2 + 2H2O à Si(OH)4
When the concentrations of monosilicic acid increase, polymerisation of the silica occurs, forming polysilicic acids followed by formation of colloidal silica. Monosilicic acid and polysilicic acids are the forms of silica analysed when determining dissolved silica content.
The deposition of silica from solutions can occur via various mechanisms. The deposition of silica that can cause the most problems for the water industry is via silica’s ability to deposit on solid surfaces that have hydroxyl (OH) groups present. Surfaces that commonly have hydroxyl groups present are glass and metallic surfaces. For example, dissolved silica will react with the surfaces of glass and begin to form a white precipitate. The silica forms silicates on the surface, resulting in silica build-up. In cases where customer complaints occur due to scale build-up, water hardness and silica concentrations should be investigated to determine the cause.
Silica can be a problem in water treatment due to its ability to cause fouling of reverse osmosis (RO) membranes (Sheikholeslami and Tan, 1999, Ning 2002, Sahachaiyunta and Sheikholeslami 2002). This occurs when the dissolved silica of the concentrate becomes super-saturated, causing silicates to form in the presence of metals, and these deposit on the membrane surface. The silicate then dehydrates, forming hard layers on the membrane that reduce the effectiveness of the process… 2011 ADWG