2007/13 + 2016/18 – Whitfield (Victoria) – E.coli, Chlorite, Chlorine Dioxide, Turbidity, Aluminium

My location
Get Directions
Whitfield – (Victoria): E.coli
10/7/07: E.coli detection (1 org/100ml), Retest was clear

1/12/09 Whitfield E. coli detection 1 org/100mL Chlorine dioxide residual present at 0.24mg/L. Resample was clear.

7/09/10 -< 30 sec Whitfield E.coli : at entry point 1org/100mL Power surge caused outage and damaged ClO2 disinfection system. Repairs were conducted promptly, with the UV barrier reinstated within 30sec of outage (via backup generator).

“Coliforms are Gram-negative, non-spore-forming, rod-shaped bacteria that are capable of aerobic and facultative anaerobic growth in the presence of bile salts or other surface active agents with similar growth-inhibiting properties. They are found in large numbers in the faeces of humans and other warm-blooded animals, but many species also occur in the environment.

Thermotolerant coliforms are a sub-group of coliforms that are able to grow at 44.5 ± 0.2°C. E. coli is the most common thermotolerant coliform present in faeces and is regarded as the most specific indicator of recent faecal contamination because generally it is not capable of growth in the environment. In contrast, some other thermotolerant coliforms (including strains of Klebsiella, Citrobacter and Enterobacter) are able to grow in the environment and their presence is not necessarily related to faecal contamination. While tests for thermotolerant coliforms can be simpler than for E. coli, E. coli is considered a superior indicator for detecting faecal contamination…” ADWG 2011

Whitfield (Chlorite)

3/7/07: Whitfield (Victoria) – Chlorite 0.55mg/L

7/8/07: Whitfield (Victoria) – Chlorite 0.43mg/L

4/9/07: Whitfield (Victoria) – Chlorite 0.35mg/L

2/10/07: Whitfield (Victoria) – Chlorite 0.34mg/L

3/6/08: Whitfield (Victoria) – Chlorite 0.37mg/L

2008/9: Whitfield (Victoria) – Chlorine Dioxide 0.6mg/L (max), Chlorite 0.5mg/L (max), Chlorate 0.37mg/L (max)

09/02/2010: Chlorite 0.43mg/L

13/04/2010: Chlorite 0.52mg/L

11/05/2010: Chlorite 0.35mg/L

2010/11: Chlorite 0.29mg/L

Chlorite: ADWG Health 0.3mg/L.

Chlorite and chlorate are disinfection by-products of chlorine dioxide disinfection process.

“… industry are having serious problems meeting chlorite/chlorate limits that were proposed in the new Australian Drinking Water Guidelines, especially for disinfection in long distance pipelines that are dosed with sodium hyptochlorite” pers comm 18/5/11.

“Chlorite occurs in drinking water when chlorine dioxide is used for purification purposes. The
International Agency for Research on Cancer (IARC) has concluded that chlorite is not classifiable as carcinogenic to humans and is listed in the Group 3 category. Changes in red blood vessels due to oxidative stress are a major concern with excessive levels of Chlorite in drinking water. According to the US EPA, potential health problems for people drinking Chorite above safe drinking water guideline include: Anemia in infants and young children and nervous system effects.” http://water.epa.gov/drink/contaminants/index.cfm

“Chlorine dioxide (chlorite) is rarely used as a disinfectant in Australian reticulated supplies.
When used, the chlorite residual is generally maintained between 0.2mg/L and 0.4mg/L. It is
particularly effective inthe control of manganese-reducing bacteria. Few data are available on
chlorate levels in Australian water supplies….Chlorine dioxide, chlorite, and chlorate are all
absorbed rapidly by the gastrointestinal tract into blood plasma and distributed to the major
organs. All compounds appear to be rapidly metabolised. Chlorine dioxide has been shown to
impair neurobehavioural and neurological development in rats exposed before birth. Experimental studies with rats and monkeys exposed to chlorine dioxide in drinking water have shown some evidence of thyroid toxicity; however, because of the studies’ limitations, it is difficult to draw firm conclusions (WHO 2005) The primary concern with chlorite and chlorate is oxidative stress resulting in changes in red blood cells. This end point is seen in laboratory animals and, by analogy with chlorate, in humans exposed to high doses in poisoning incidents (WHO 2005).” Australian Drinking Water Guidelines – National Health and Medical Research Centre

“…Subchronic studies in animals (cats, mice, rats and monkeys) indicate that chlorite and chlorate cause haematological changes (osmotic fragility, oxidative stress, increase in mean corpuscular volume), stomach lesions and increased spleen and adrenal weights… Neurobehavioural effects (lowered auditory startle amplitude, decreased brain weight and decreased exploratory activity) are the most sensitive endpoints following oral exposure to chlorite…” http://www.hc-sc.gc.ca/ewh-semt/pubs/water-eau/chlorite-chlorate/indexeng.
php#sec10_1Guidelines for Canadian Drinking Water Quality.

Whitfield (Victoria) – Turbidity

2011/12: Whitfield Turbidity 5.6NTU

2012/13: Whitfield Turbidity 13NTU

2017/18 – Whitfield (Victoria) – Turbidity 6.3NTU

Chlorine-resistant pathogen reduction: Where filtration alone is used as the water treatment
process to address identified risks from Cryptosporidium and Giardia, it is essential
that filtration is optimised and consequently the target for the turbidity of water leaving
individual filters should be less than 0.2 NTU, and should not exceed 0.5 NTU at any time
Disinfection: A turbidity of less than 1 NTU is desirable at the time of disinfection with
chlorine unless a higher value can be validated in a specific context.

Aesthetic: Based on aesthetic considerations, the turbidity should not exceed 5 NTU at the
consumer’s tap

Whifield (Victoria) – Aluminium

2016/17:  Whitfield Aluminium 0.91mg/L

According to the ADWG, no health guideline has been adopted for Aluminium, but that the issue is still open to review. Aluminium can come from natural geological sources or from the use of aluminium salts as coagulants in water treatment plants. According to the ADWG “A well-operated water filtration plant (even using aluminium as a flocculant) can achieve aluminium concentrations in the finished water of less than 0.1 mg/L.

The most common form of aluminium in water treatment plants is Aluminium Sulfate (Alum). Alum can be supplied as a bulk liquid or in granular form. It is used at water treatment plants as a coagulant to remove turbidity, microorganisms, organic matter and inorganic chemicals. If water is particularly dirty an Alum dose of as high as 500mg/L could occur. There is also concern that other metals may also exist in refined alum.

While the ADWG mentions that there is considerable evidence that Aluminium is neurotoxic and can pass the gut barrier to accumulate in the blood, leading to a condition called encephalopathy (dialysis dementia) and that Aluminium has been associated with Parkinsonism dementia and amyotrophic lateral sclerosis, the NHMRC, whilst also acknowledging studies which have linked Aluminium with Alzheimer disease, has not granted Aluminium a NOEL (No Observable Effect Level) due to insufficient and contradictory data. Without a NOEL, a health guideline cannot be established. The NHMRC has also stated that if new information comes to hand, a health guideline may be established in the future.

In communication with Aluminium expert Dr Chris Exley (Professor in Bioinorganic Chemistry
The Birchall Centre, Lennard-Jones Laboratories, Keele University, Staffordshire UK) in March 2013 regarding high levels of Aluminium detected in the South Western Victorian town of Hamilton
“It is my opinion that any value above 0.5 mg/L is totally unacceptable and a potential health risk. Where such values are maintained over days, weeks or even months, as indeed is indicated by the data you sent to me, these represent a significant health risk to all consumers. While consumers may not experience any short term health effects the result of longer term exposure to elevated levels of aluminium in potable waters may be a significant increase in the body burden of aluminium in these individuals. This artificially increased body burden will not return to ‘normal’ levels when the Al content of the potable water returns to normal but will act as a new platform level from which the Al body burden will continue to increase with age.