2008/13 + 2017/21 – Bungeree/Wallace (Victoria) – E.coli, Trihalomethanes, pH, Hardness

2010/12 –  Bungeree/Wallace (Victoria) E.coli

22 September 2011(6 days)South Wallace Tank,Bungaree/Wallace(Ballarat System)E. coli – 2 org/100mL Bungaree/Wallace Reticulation (Ballarat System)

1 March 2012 (6 days) North Wallace Tank, Bungaree/Wallace (Ballarat System) E. coli – 2 org/100mL Bungaree/Wallace Reticulation (Ballarat System)

“E.coli

Thermotolerant coliforms are a sub-group of coliforms that are able to grow at 44.5 ± 0.2°C. E. coli is the most common thermotolerant coliform present in faeces and is regarded as the most specific indicator of recent faecal contamination because generally it is not capable of growth in the environment. In contrast, some other thermotolerant coliforms (including strains of Klebsiella, Citrobacter and Enterobacter) are able to grow in the environment and their presence is not necessarily related to faecal contamination. While tests for thermotolerant coliforms can be simpler than for E. coli, E. coli is considered a superior indicator for detecting faecal contamination…” ADWG

Bungeree/Wallace (Victoria) – Trihalomethanes

2012/13 Bungaree/Wallace Trihalomethanes 250ug/L

Trihalomethanes Australian Guideline Level 250μg/L

Why and how are THMs formed?
“When chlorine is added to water with organic material, such as algae, river weeds, and decaying leaves, THMs are formed. Residual chlorine molecules react with this harmless organic material to form a group of chlorinated chemical compounds, THMs. They are tasteless and odourless, but harmful and potentially toxic. The quantity of by-products formed is determined by several factors, such as the amount and type of organic material present in water, temperature, pH, chlorine dosage, contact time available for chlorine, and bromide concentration in the water. The organic matter in water mainly consists of a) humic substance, which is the organic portion of soil that remains after prolonged microbial decomposition formed by the decay of leaves, wood, and other vegetable matter; and b) fulvic acid, which is a water soluble substance of low molecular weight that is derived from humus”. US EPA

Bungeree/Wallace (Victoria) – pH (alkaline)

Average pH: 2008 July-2009 June: 9 pH units

Average pH: 2009 July-2010 June: 9 pH units

Mean pH: 2017 July-2018 June: 8.6pH units

Mean pH: 2018 July-2019 June: 8.6pH units

Mean pH: 2020 July-2021 June: 8.7pH units

Based on the need to reduce corrosion and encrustation in pipes and fittings, the pH of
drinking water should be between 6.5 and 8.5.

New concrete tanks and cement-mortar lined pipes can significantly increase pH and
a value up to 9.2 may be tolerated, provided monitoring indicates no deterioration in
microbiological quality.

pH is a measure of the hydrogen ion concentration of water. It is measured on a logarithmic scale from 0 to 14. A pH of 7 is neutral, greater than 7 is alkaline, and less than 7 is acidic.

One of the major objectives in controlling pH is to minimise corrosion and encrustation in pipes and fittings. Corrosion can be reduced by the formation of a protective layer of calcium carbonate on the inside of the pipe or fitting, and the formation of this layer is affected by pH, temperature, the availability of calcium (hardness) and carbon dioxide. If the water is too alkaline (above pH 8.5), the rapid deposition and build-up of calcium carbonate that can result may eventually block the pipe.

Bungeree/Wallace – Victoria – Hardness

2008/09: Bungeree/Wallace (Victoria) – Hardness 230mg/L (Highest Detection Only)

GUIDELINE

“To minimise undesirable build‑up of scale in hot water systems, total hardness (as calcium
carbonate) in drinking water should not exceed 200 mg/L.

Hard water requires more soap than soft water to obtain a lather. It can also cause scale to form on hot water pipes and fittings. Hardness is caused primarily by the presence of calcium and magnesium ions, although other cations such as strontium, iron, manganese and barium can also contribute.”

Australian Drinking Water Guidelines 2011