2010/12 + 2020/21 – Aramoor (Queensland) – Trihalomethanes, Chlorate, Turbidity, Hardness, Manganese

Aramoor (Queensland) – Trihalomethanes

Aramoor (Qld)  10 Nov 2020 to 7 April 2021. THM’s ranging from 270μg/L to 440μg/L

Trihalomethanes Australian Guideline Level 250μg/L (0.25mg/L)

Why and how are THMs formed?
“When chlorine is added to water with organic material, such as algae, river weeds, and decaying leaves, THMs are formed. Residual chlorine molecules react with this harmless organic material to form a group of chlorinated chemical compounds, THMs. They are tasteless and odourless, but harmful and potentially toxic. The quantity of by-products formed is determined by several factors, such as the amount and type of organic material present in water, temperature, pH, chlorine dosage, contact time available for chlorine, and bromide concentration in the water. The organic matter in water mainly consists of a) humic substance, which is the organic portion of soil that remains after prolonged microbial decomposition formed by the decay of leaves, wood, and other vegetable matter; and b) fulvic acid, which is a water soluble substance of low molecular weight that is derived from humus”. Source: https://water.epa.gov/drink/contaminant

2010/12: Aramoor (Queensland) – Chlorate

2010/12: Aramoor (Queensland) 0.59mg/L

Chlorite: ADWG Health 0.3mg/L.

Chlorite and chlorate are disinfection by-products of chlorine dioxide disinfection process.

“… industry are having serious problems meeting chlorite/chlorate limits that were proposed in the new Australian Drinking Water Guidelines, especially for disinfection in long distance pipelines that are dosed with sodium hyptochlorite” pers comm 18/5/11.

“Chlorite occurs in drinking water when chlorine dioxide is used for purification purposes. The
International Agency for Research on Cancer (IARC) has concluded that chlorite is not classifiable as carcinogenic to humans and is listed in the Group 3 category. Changes in red blood vessels due to oxidative stress are a major concern with excessive levels of Chlorite in drinking water. According to the US EPA, potential health problems for people drinking Chorite above safe drinking water guideline include: Anemia in infants and young children and nervous system effects.” https://water.epa.gov/drink/contaminants/index.cfm

“Chlorine dioxide (chlorite) is rarely used as a disinfectant in Australian reticulated supplies.
When used, the chlorite residual is generally maintained between 0.2mg/L and 0.4mg/L. It is
particularly effective inthe control of manganese-reducing bacteria. Few data are available on
chlorate levels in Australian water supplies….Chlorine dioxide, chlorite, and chlorate are all
absorbed rapidly by the gastrointestinal tract into blood plasma and distributed to the major
organs. All compounds appear to be rapidly metabolised. Chlorine dioxide has been shown to
impair neurobehavioural and neurological development in rats exposed before birth. Experimental studies with rats and monkeys exposed to chlorine dioxide in drinking water have shown some evidence of thyroid toxicity; however, because of the studies’ limitations, it is difficult to draw firm conclusions (WHO 2005) The primary concern with chlorite and chlorate is oxidative stress resulting in changes in red blood cells. This end point is seen in laboratory animals and, by analogy with chlorate, in humans exposed to high doses in poisoning incidents (WHO 2005).” Australian Drinking Water Guidelines – National Health and Medical Research Centre

“…Subchronic studies in animals (cats, mice, rats and monkeys) indicate that chlorite and chlorate cause haematological changes (osmotic fragility, oxidative stress, increase in mean corpuscular volume), stomach lesions and increased spleen and adrenal weights… Neurobehavioural effects (lowered auditory startle amplitude, decreased brain weight and decreased exploratory activity) are the most sensitive endpoints following oral exposure to chlorite…” https://www.hc-sc.gc.ca/ewh-semt/pubs/water-eau/chlorite-chlorate/indexeng.
php#sec10_1Guidelines for Canadian Drinking Water Quality.

Aramoor (Queensland) – Turbidity

2010/12: Aramoor (Queensland) – Turbidity 5 NTU (Max).

2020/21: Aramoor (Queensland) – Turbidity 8.8 NTU (max), 0.07 NTU av. at water treatment plant

Chlorine-resistant pathogen reduction: Where filtration alone is used as the water treatment
process to address identified risks from Cryptosporidium and Giardia, it is essential
that filtration is optimised and consequently the target for the turbidity of water leaving
individual filters should be less than 0.2 NTU, and should not exceed 0.5 NTU at any time
Disinfection: A turbidity of less than 1 NTU is desirable at the time of disinfection with
chlorine unless a higher value can be validated in a specific context.

Aesthetic: Based on aesthetic considerations, the turbidity should not exceed 5 NTU at the
consumer’s tap

Aramoor – (Queensland) – Hardness

2020/21: Aramoor (Queensland) – Hardness 228mg/L (max), 171mg/L (av.) at Water Treatment Plant

GUIDELINE

“To minimise undesirable build‑up of scale in hot water systems, total hardness (as calcium
carbonate) in drinking water should not exceed 200 mg/L.

Hard water requires more soap than soft water to obtain a lather. It can also cause scale to form on hot water pipes and fittings. Hardness is caused primarily by the presence of calcium and magnesium ions, although other cations such as strontium, iron, manganese and barium can also contribute.”

Australian Drinking Water Guidelines 2011

Aramoor (Queensland) – Manganese

2021/21: Aramoor (Qld)  Manganese 0.687mg/L (max), 0.1mg/L (av.) at water treatment plant

Manganese: ADWG Guidelines 0.5mg/L. ADWG Aesthetic Guideline 0.1mg/L
Manganese is found in the natural environment. Manganese in drinking water above 0.1mg/L can give water an unpleasant taste and stain plumbing fixtures and laundry.