Burdett South (South Australia) – Chlorine

2/6/22: Burdett South (South Australia) Chlorine 5.6mg/L (max)

GENERAL DESCRIPTION
Chlorine dissociates in water to form free chlorine, which consists of aqueous molecular chlorine, hypochlorous acid and hypochlorite ion. Chlorine and hypochlorites are toxic to microorganisms and are used extensively as disinfectants for drinking water supplies. Chlorine is also used to disinfect sewage and wastewater, swimming pool water, in-plant supplies, and industrial cooling water.

Chlorine has an odour threshold in drinking water of about 0.6 mg/L, but some people are particularly sensitive and can detect amounts as low as 0.2 mg/L. Water authorities may need to exceed the odour threshold value of 0.6 mg/L in order to maintain an effective disinfectant residual.

In the food industry, chlorine and hypochlorites are used for general sanitation and for odour control. Large amounts of chlorine are used in the production of industrial and domestic disinfectants and bleaches, and it is used in the synthesis of a large range of chemical compounds.

Free chlorine reacts with ammonia and certain nitrogen compounds to form combined chlorine. With ammonia, chlorine forms chloramines (monochloramine, dichloramine and nitrogen trichloride or trichloramine) (APHA 2012). Chloramines are used for disinfection but are weaker oxidising agents than free chlorine.

Free chlorine and combined chlorine may be present simultaneously (APHA 2012). The term totalchlorine refers to the sum of free chlorine and combined chlorine present in a sample.

Chlorine (Free) ADWG Guideline: 5mg/L (Chlorine in chloraminated supplies 4.1mg/L). Chlorine dissociates in water to form free chlorine, which consists of aqueous molecular chlorine, hypochlorous acid and hypochlorite ion.

Chlorine (Total) ADWG Guideline 5mg/L (chloraminated supplies 4.1mg/L): The term total chlorine refers to the sum of free chlorine and combined chlorine present in a sample

Burdett South (South Australia) – Trihalomethanes

Breaches to Australian Drinking Water Guidelines Levels Only

11/1/2017 Burdett South Kepa St Trihalomethanes – Total 282 ug/L

3/5/2017 Burdett South Kepa St Trihalomethanes – Total 265 ug/L

Trihalomethanes Australian Guideline Level 250μg/L (0.25mg/L)

Why and how are THMs formed?
“When chlorine is added to water with organic material, such as algae, river weeds, and decaying leaves, THMs are formed. Residual chlorine molecules react with this harmless organic material to form a group of chlorinated chemical compounds, THMs. They are tasteless and odourless, but harmful and potentially toxic. The quantity of by-products formed is determined by several factors, such as the amount and type of organic material present in water, temperature, pH, chlorine dosage, contact time available for chlorine, and bromide concentration in the water. The organic matter in water mainly consists of a) humic substance, which is the organic portion of soil that remains after prolonged microbial decomposition formed by the decay of leaves, wood, and other vegetable matter; and b) fulvic acid, which is a water soluble substance of low molecular weight that is derived from humus”. Source: https://water.epa.gov/drink/contaminan

Burdett South (South Australia) – Total Haloacetic Acids

Burdett South (South Australia) Total Haloacetic Acid (HAA 9) 138ug/L (max) 132.5ug/L (av. 2021/22)

30/11/22: Burdett South (South Australia) Total Haloacetic Acid (HAA 9) 236ug/L (max) 176.5ug/L (av. 2022/23)

“Chloroacetic acids are produced in drinking water as by-products of the reaction between chlorine and naturally occurring humic and fulvic acids. Concentrations reported overseas range up to 0.16mg/L and are typically about half the chloroform concentration. The chloroacetic acids are used commercially as reagents or intermediates in the preparation of a wide variety of chemicals. Monochloroacetic acid can be used as a pre-emergent herbicide, dichloroacetic acid as an ingredient in some pharmaceutical products, and trichloroacetic acid as a herbicide, soil sterilant and antiseptic.” Australian Drinking Water Guidelines – National Health and Medical Research Council.

Burdett South (South Australia) – Chloroketones >10ug/L

30/11/22: Burdett South (South Australia): 1,1,1-trichloropropan-2-one 12.2ug/L

Data are inadequate to set guideline values for chloroketones in drinking water.
GENERAL DESCRIPTION
The chloroketones are produced in drinking water as by-products of the reaction between naturally occurring organic matter and chlorine. No data are available on other sources or uses for these compounds. Concentrations of chloroketones in drinking water reported overseas are very low and are estimated at less than 0.01 mg/L.

TYPICAL VALUES IN AUSTRALIAN DRINKING WATER
In major Australian reticulated supplies 1,1,1-trichloropropanone has been recorded in concentrations up to 0.02 mg/L, but it is usually below the limit of determination of 0.0005 mg/L. No data are available for other chloroketones.

LIMITING FORMATION IN DRINKING WATER
The presence of chloroketones in drinking water can be minimised by removing naturally occurring organic matter from the source water, by reducing the amount of chlorine added, or by the use of alternative disinfectants.” 2011 ADWG

Burdett South (South Australia) – Bromodichloromethane

2022/23: Burdett South (South Australia) Bromodichloromethane 92ug/L (max), 55.89ug/L (av. 2022/23)

WHO Guideline level BDCM: 60ug/L (Australian Guideline for BDCM is included in the Trihalomethane (THM) combined total of BDCM, Chloroform, Dibromochloromethane and Bromoform. THM guideline is 250ug/L)

“Carcinogenicity : Bromodichloromethane is reasonably anticipated to be a human carcinogen based on sufficient evidence of carcinogenicity from studies in experimental animals.
Cancer Studies in Experimental Animals: Oral exposure to bromodichloromethane caused tumors at several different tissue sites in mice and rats. Administration of bromodichloromethane by stomach tube caused benign and malignant kidney tumors (tubular-cell adenoma and adenocarcinoma) in male mice and in rats of both sexes, benign and
malignant liver tumors (hepatocellular adenoma and carcinoma) in female mice, and benign and malignant colon tumors (adenomatous polyps and adenocarcinoma) in rats of both sexes (NTP 1987, ATSDR 1989, IARC 1991, 1999).

Burdett South (South Australia) – Chloral Hydrate

19/10/11 Burdett South  Chloral Hydrate 22.9ug/L

17/11/11 Burdett South  Chloral Hydrate 20.7ug/L

9/2/12 Burdett South  Chloral Hydrate 20.4ug/L

8/3/12 Burdett South  Chloral Hydrate 36.8ug/L

5/4/12 Burdett South  Chloral Hydrate 30.9ug/L

3/5/12 Burdett South  Chloral Hydrate 40ug/L

31/5/12 Burdett South  Chloral Hydrate 30.8ug/L

Chloral hydrate is a disinfection by-product, arising from chlorination of water containing naturally occurring organic material (NOM). Chloral hydrate is a sedative and hypnotic drug. Long-term use of chloral hydrate is associated with a rapid development of tolerance to its effects and possible addiction as well as adverse effects including rashes, gastric
discomfort and severe renal, cardiac and hepatic failure.

2004 Australian Drinking Water Guideline: Trichloroacetaldehyde (chloral hydrate): 0.02mg/L

2011 Australian Drinking Water Guideline: Trichloroacetaldehyde (chloral hydrate): 0.1mg/L

2022/23 Burdett South (South Australia) Chloropicrin

2022/23: Burdett South (South Australia) Chloropicrin 1.9ug/L (max), 0.95ug/L (av.)

No Guideline level for Chloropicrin

Chloropicrin is formed in water by the reaction of chlorine with humic acids, amino acids,
and nitrophenols. The presence of nitrates increases the amount formed (6). Chloropicrin has
been detected in drinking-water; however, in the presence of reducing agents, it is converted
into chloroform

Burdett South (South Australia) – Haloacetonitriles (Dichloroacetonitrile)

30/11/22: Burdett South (South Australia) – Bromochloroacetonitrile 11.5ug/L (max), 7.9ug/L (av. 2022/23)

“GUIDELINE
Data are inadequate to set guideline values for haloacetonitriles in drinking water
GENERAL DESCRIPTION
Haloacetonitriles are formed from organic precursors during chlorination or chloramination of drinking  water. Concentrations of dihaloacetonitriles reported overseas range up to 0.04 mg/L but are typically  less than 0.003 mg/L. Concentrations of trichloroacetonitrile are less than 0.001 mg/L.
Trichloroacetonitrile has been used as an insecticide. No data are available on uses for the other haloacetonitriles.
TYPICAL VALUES IN AUSTRALIAN DRINKING WATER
No data are available on concentrations of haloacetonitriles in Australian drinking waters”. ADWG 2011

2011/12 + 2017/23: Burdett South (South Australia) – Chlorine, Chloral Hydrate, Trihalomethanes, Total Haloacetic Acids, Chloroketones, Haloacetonitriles

Burdett South (South Australia) – Chlorine

2/6/22: Burdett South (South Australia) Chlorine 5.6mg/L (max)

GENERAL DESCRIPTION
Chlorine dissociates in water to form free chlorine, which consists of aqueous molecular chlorine, hypochlorous acid and hypochlorite ion. Chlorine and hypochlorites are toxic to microorganisms and are used extensively as disinfectants for drinking water supplies. Chlorine is also used to disinfect sewage and wastewater, swimming pool water, in-plant supplies, and industrial cooling water.

Chlorine has an odour threshold in drinking water of about 0.6 mg/L, but some people are particularly sensitive and can detect amounts as low as 0.2 mg/L. Water authorities may need to exceed the odour threshold value of 0.6 mg/L in order to maintain an effective disinfectant residual.

In the food industry, chlorine and hypochlorites are used for general sanitation and for odour control. Large amounts of chlorine are used in the production of industrial and domestic disinfectants and bleaches, and it is used in the synthesis of a large range of chemical compounds.

Free chlorine reacts with ammonia and certain nitrogen compounds to form combined chlorine. With ammonia, chlorine forms chloramines (monochloramine, dichloramine and nitrogen trichloride or trichloramine) (APHA 2012). Chloramines are used for disinfection but are weaker oxidising agents than free chlorine.

Free chlorine and combined chlorine may be present simultaneously (APHA 2012). The term totalchlorine refers to the sum of free chlorine and combined chlorine present in a sample.

Chlorine (Free) ADWG Guideline: 5mg/L (Chlorine in chloraminated supplies 4.1mg/L). Chlorine dissociates in water to form free chlorine, which consists of aqueous molecular chlorine, hypochlorous acid and hypochlorite ion.

Chlorine (Total) ADWG Guideline 5mg/L (chloraminated supplies 4.1mg/L): The term total chlorine refers to the sum of free chlorine and combined chlorine present in a sample

Burdett South (South Australia) – Trihalomethanes

Breaches to Australian Drinking Water Guidelines Levels Only

11/1/2017 Burdett South Kepa St Trihalomethanes – Total 282 ug/L

3/5/2017 Burdett South Kepa St Trihalomethanes – Total 265 ug/L

Trihalomethanes Australian Guideline Level 250μg/L (0.25mg/L)

Why and how are THMs formed?
“When chlorine is added to water with organic material, such as algae, river weeds, and decaying leaves, THMs are formed. Residual chlorine molecules react with this harmless organic material to form a group of chlorinated chemical compounds, THMs. They are tasteless and odourless, but harmful and potentially toxic. The quantity of by-products formed is determined by several factors, such as the amount and type of organic material present in water, temperature, pH, chlorine dosage, contact time available for chlorine, and bromide concentration in the water. The organic matter in water mainly consists of a) humic substance, which is the organic portion of soil that remains after prolonged microbial decomposition formed by the decay of leaves, wood, and other vegetable matter; and b) fulvic acid, which is a water soluble substance of low molecular weight that is derived from humus”. Source: https://water.epa.gov/drink/contaminan

Burdett South (South Australia) – Total Haloacetic Acids

Burdett South (South Australia) Total Haloacetic Acid (HAA 9) 138ug/L (max) 132.5ug/L (av. 2021/22)

30/11/22: Burdett South (South Australia) Total Haloacetic Acid (HAA 9) 236ug/L (max) 176.5ug/L (av. 2022/23)

“Chloroacetic acids are produced in drinking water as by-products of the reaction between chlorine and naturally occurring humic and fulvic acids. Concentrations reported overseas range up to 0.16mg/L and are typically about half the chloroform concentration. The chloroacetic acids are used commercially as reagents or intermediates in the preparation of a wide variety of chemicals. Monochloroacetic acid can be used as a pre-emergent herbicide, dichloroacetic acid as an ingredient in some pharmaceutical products, and trichloroacetic acid as a herbicide, soil sterilant and antiseptic.” Australian Drinking Water Guidelines – National Health and Medical Research Council.

Burdett South (South Australia) – Chloroketones >10ug/L

30/11/22: Burdett South (South Australia): 1,1,1-trichloropropan-2-one 12.2ug/L

Data are inadequate to set guideline values for chloroketones in drinking water.
GENERAL DESCRIPTION
The chloroketones are produced in drinking water as by-products of the reaction between naturally occurring organic matter and chlorine. No data are available on other sources or uses for these compounds. Concentrations of chloroketones in drinking water reported overseas are very low and are estimated at less than 0.01 mg/L.

TYPICAL VALUES IN AUSTRALIAN DRINKING WATER
In major Australian reticulated supplies 1,1,1-trichloropropanone has been recorded in concentrations up to 0.02 mg/L, but it is usually below the limit of determination of 0.0005 mg/L. No data are available for other chloroketones.

LIMITING FORMATION IN DRINKING WATER
The presence of chloroketones in drinking water can be minimised by removing naturally occurring organic matter from the source water, by reducing the amount of chlorine added, or by the use of alternative disinfectants.” 2011 ADWG

Burdett South (South Australia) – Bromodichloromethane

2022/23: Burdett South (South Australia) Bromodichloromethane 92ug/L (max), 55.89ug/L (av. 2022/23)

WHO Guideline level BDCM: 60ug/L (Australian Guideline for BDCM is included in the Trihalomethane (THM) combined total of BDCM, Chloroform, Dibromochloromethane and Bromoform. THM guideline is 250ug/L)

“Carcinogenicity : Bromodichloromethane is reasonably anticipated to be a human carcinogen based on sufficient evidence of carcinogenicity from studies in experimental animals.
Cancer Studies in Experimental Animals: Oral exposure to bromodichloromethane caused tumors at several different tissue sites in mice and rats. Administration of bromodichloromethane by stomach tube caused benign and malignant kidney tumors (tubular-cell adenoma and adenocarcinoma) in male mice and in rats of both sexes, benign and
malignant liver tumors (hepatocellular adenoma and carcinoma) in female mice, and benign and malignant colon tumors (adenomatous polyps and adenocarcinoma) in rats of both sexes (NTP 1987, ATSDR 1989, IARC 1991, 1999).

Burdett South (South Australia) – Chloral Hydrate

19/10/11 Burdett South  Chloral Hydrate 22.9ug/L

17/11/11 Burdett South  Chloral Hydrate 20.7ug/L

9/2/12 Burdett South  Chloral Hydrate 20.4ug/L

8/3/12 Burdett South  Chloral Hydrate 36.8ug/L

5/4/12 Burdett South  Chloral Hydrate 30.9ug/L

3/5/12 Burdett South  Chloral Hydrate 40ug/L

31/5/12 Burdett South  Chloral Hydrate 30.8ug/L

Chloral hydrate is a disinfection by-product, arising from chlorination of water containing naturally occurring organic material (NOM). Chloral hydrate is a sedative and hypnotic drug. Long-term use of chloral hydrate is associated with a rapid development of tolerance to its effects and possible addiction as well as adverse effects including rashes, gastric
discomfort and severe renal, cardiac and hepatic failure.

2004 Australian Drinking Water Guideline: Trichloroacetaldehyde (chloral hydrate): 0.02mg/L

2011 Australian Drinking Water Guideline: Trichloroacetaldehyde (chloral hydrate): 0.1mg/L

2022/23 Burdett South (South Australia) Chloropicrin

2022/23: Burdett South (South Australia) Chloropicrin 1.9ug/L (max), 0.95ug/L (av.)

No Guideline level for Chloropicrin

Chloropicrin is formed in water by the reaction of chlorine with humic acids, amino acids,
and nitrophenols. The presence of nitrates increases the amount formed (6). Chloropicrin has
been detected in drinking-water; however, in the presence of reducing agents, it is converted
into chloroform

Burdett South (South Australia) – Haloacetonitriles (Dichloroacetonitrile)

30/11/22: Burdett South (South Australia) – Bromochloroacetonitrile 11.5ug/L (max), 7.9ug/L (av. 2022/23)

“GUIDELINE
Data are inadequate to set guideline values for haloacetonitriles in drinking water
GENERAL DESCRIPTION
Haloacetonitriles are formed from organic precursors during chlorination or chloramination of drinking  water. Concentrations of dihaloacetonitriles reported overseas range up to 0.04 mg/L but are typically  less than 0.003 mg/L. Concentrations of trichloroacetonitrile are less than 0.001 mg/L.
Trichloroacetonitrile has been used as an insecticide. No data are available on uses for the other haloacetonitriles.
TYPICAL VALUES IN AUSTRALIAN DRINKING WATER
No data are available on concentrations of haloacetonitriles in Australian drinking waters”. ADWG 2011