Queenstown (Tasmania) – E.coli
Deceember 18 2015: Queenstown (Tasmania) Supply Tank – 6.9 MPN100/mL
Deceember 18 2015: Queenstown (Tasmania) Du Cane St – 4.1 MPN100/mL
Escherichia coli should not be detected in any 100 mL sample of drinking water. If detected
in drinking water, immediate action should be taken including investigation of potential
sources of faecal contamination.
“Coliforms are Gram-negative, non-spore-forming, rod-shaped bacteria that are capable of aerobic and facultative anaerobic growth in the presence of bile salts or other surface active agents with similar growth-inhibiting properties. They are found in large numbers in the faeces of humans and other warm-blooded animals, but many species also occur in the environment.
Thermotolerant coliforms are a sub-group of coliforms that are able to grow at 44.5 ± 0.2°C. E. coli is the most common thermotolerant coliform present in faeces and is regarded as the most specific indicator of recent faecal contamination because generally it is not capable of growth in the environment. In contrast, some other thermotolerant coliforms (including strains of Klebsiella, Citrobacter and Enterobacter) are able to grow in the environment and their presence is not necessarily related to faecal contamination. While tests for thermotolerant coliforms can be simpler than for E. coli, E. coli is considered a superior indicator for detecting faecal contamination…” ADWG 2011
Queenstown (Tasmania) – Lead (2011)
Lead has also breached ADWG’s at Queenstown and Gormanston in south west Tasmania. Breaches occurred three times in Gormanston in 2011 (highest reading 0.0295mg/L) and twice in Queenstown (highest reading 0.0.0118mg/L).
Based on health considerations, the concentration of lead in drinking water should not
exceed 0.01 mg/L.
“… Lead can be present in drinking water as a result of dissolution from natural sources, or from household plumbing systems containing lead. These may include lead in pipes, or in solder used to seal joints. The amount of lead dissolved will depend on a number of factors including pH, water hardness and the standing time of the water.
Lead is the most common of the heavy metals and is mined widely throughout the world. It is used in the production of lead acid batteries, solder, alloys, cable sheathing, paint pigments, rust inhibitors, ammunition, glazes and plastic stabilisers. The organo-lead compounds tetramethyl and tetraethyl lead are used extensively as anti-knock and lubricating compounds in gasoline…
Lead can be absorbed by the body through inhalation, ingestion or placental transfer. In adults,
approximately 10% of ingested lead is absorbed but in children this figure can be 4 to 5 times higher. After absorption, the lead is distributed in soft tissue such as the kidney, liver, and bone marrow where it has a biological half-life in adults of less than 40 days, and in skeletal bone where it can persist for 20 to 30 years.
In humans, lead is a cumulative poison that can severely affect the central nervous system. Infants, fetuses and pregnant women are most susceptible. Placental transfer of lead occurs in humans as early as the 12th week of gestation and continues throughout development.
Many epidemiological studies have been carried out on the effects of lead exposure on the intellectual development of children. Although there are some conflicting results, on balance the studies demonstrate that exposure to lead can adversely affect intelligence.
These results are supported by experiments using young primates, where exposure to lead causes significant behavioural and learning difficulties of the same type as those observed in children.
Other adverse effects associated with exposure to high amounts of lead include kidney damage, interference with the production of red blood cells, and interference with the metabolism of calcium needed for bone formation…” ADWG 2011
Queenstown – Tasmania – Turbidity
September 1 2015: Queenstown (Tasmania) Murray St – Turbidity 5.24 NTU
September 15 2015: Queenstown (Tasmania) Murray St – Turbidity 5.4 NTU
Chlorine-resistant pathogen reduction: Where filtration alone is used as the water treatment
process to address identified risks from Cryptosporidium and Giardia, it is essential
that filtration is optimised and consequently the target for the turbidity of water leaving
individual filters should be less than 0.2 NTU, and should not exceed 0.5 NTU at any time
Disinfection: A turbidity of less than 1 NTU is desirable at the time of disinfection with
chlorine unless a higher value can be validated in a specific context.
Aesthetic: Based on aesthetic considerations, the turbidity should not exceed 5 NTU at the
consumer’s tap.
According to the ADWG, no health guideline has been adopted for Aluminium, but that the issue is still open to review. Aluminium can come from natural geological sources or from the use of aluminium salts as coagulants in water treatment plants. According to the ADWG “A well-operated water filtration plant (even using aluminium as a flocculant) can achieve aluminium concentrations in the finished water of less than 0.1 mg/L.
The most common form of aluminium in water treatment plants is Aluminium Sulfate (Alum). Alum can be supplied as a bulk liquid or in granular form. It is used at water treatment plants as a coagulant to remove turbidity, microorganisms, organic matter and inorganic chemicals. If water is particularly dirty an Alum dose of as high as 500mg/L could occur. There is also concern that other metals may also exist in refined alum.
While the ADWG mentions that there is considerable evidence that Aluminium is neurotoxic and can pass the gut barrier to accumulate in the blood, leading to a condition called encephalopathy (dialysis dementia) and that Aluminium has been associated with Parkinsonism dementia and amyotrophic lateral sclerosis, the NHMRC, whilst also acknowledging studies which have linked Aluminium with Alzheimer disease, has not granted Aluminium a NOEL (No Observable Effect Level) due to insufficient and contradictory data. Without a NOEL, a health guideline cannot be established. The NHMRC has also stated that if new information comes to hand, a health guideline may be established in the future.
In communication with Aluminium expert Dr Chris Exley (Professor in Bioinorganic Chemistry
The Birchall Centre, Lennard-Jones Laboratories, Keele University, Staffordshire UK) in March 2013 regarding high levels of Aluminium detected in the South Western Victorian town of Hamilton
“It is my opinion that any value above 0.5 mg/L is totally unacceptable and a potential health risk. Where such values are maintained over days, weeks or even months, as indeed is indicated by the data you sent to me, these represent a significant health risk to all consumers. While consumers may not experience any short term health effects the result of longer term exposure to elevated levels of aluminium in potable waters may be a significant increase in the body burden of aluminium in these individuals. This artificially increased body burden will not return to ‘normal’ levels when the Al content of the potable water returns to normal but will act as a new platform level from which the Al body burden will continue to increase with age.
Queenstown (Tasmania) – HAA’s
12/10/20: Queenstown (Tasmania) Total Haloacetic Acid (HAA7) 144 ug/L (65ug/L Trichloroacetic Acid, 70ug/L Dichloroacetic Acid)
20/7/20: Queenstown (Tasmania) Total Haloacetic Acid (HAA7) 135 ug/L (68ug/L Trichloroacetic Acid, 59ug/L Dichloroacetic Acid)
Australian Guidelines Trichloroacetic Acid 0.100mg/L, Dichloroacetic Acid 0.100mg/L
“Chloroacetic acids are produced in drinking water as by-products of the reaction between chlorine and naturally occurring humic and fulvic acids. Concentrations reported overseas range up to 0.16mg/L and are typically about half the chloroform concentration. The chloroacetic acids are used commercially as reagents or intermediates in the preparation of a wide variety of chemicals. Monochloroacetic acid can be used as a pre-emergent herbicide, dichloroacetic acid as an ingredient in some pharmaceutical products, and trichloroacetic acid as a herbicide, soil sterilant and antiseptic.” Australian Drinking Water Guidelines – National Health and Medical Research
Queenstown (Tasmania) – Cobalt
15/7/24: Queenstown (Tasmania) Cobalt (dissolved total) 0.0002mg/L
There is no guideline for Cobalt and compounds in the Australian Drinking Water Guidelines
Queenstown (Tasmania) – Chloroketones
15/7/24: Queenstown (Tasmania): 1,1,1-trichloropropanone 8.6ug/L
Data are inadequate to set guideline values for chloroketones in drinking water. GENERAL DESCRIPTION The chloroketones are produced in drinking water as by-products of the reaction between naturally occurring organic matter and chlorine. No data are available on other sources or uses for these compounds. Concentrations of chloroketones in drinking water reported overseas are very low and are estimated at less than 0.01 mg/L.
TYPICAL VALUES IN AUSTRALIAN DRINKING WATER In major Australian reticulated supplies 1,1,1-trichloropropanone has been recorded in concentrations up to 0.02 mg/L, but it is usually below the limit of determination of 0.0005 mg/L. No data are available for other chloroketones.
LIMITING FORMATION IN DRINKING WATER The presence of chloroketones in drinking water can be minimised by removing naturally occurring organic matter from the source water, by reducing the amount of chlorine added, or by the use of alternative disinfectants.” 2011 ADWG
Queenstown (Tasmania) – Haloacetonitriles
15/7/24: Queenstown (Tasmania) – Dichloroacetonitrile 3.1ug/L
“GUIDELINE
Data are inadequate to set guideline values for haloacetonitriles in drinking water
GENERAL DESCRIPTION
Haloacetonitriles are formed from organic precursors during chlorination or chloramination of drinking water. Concentrations of dihaloacetonitriles reported overseas range up to 0.04 mg/L but are typically less than 0.003 mg/L. Concentrations of trichloroacetonitrile are less than 0.001 mg/L.
Trichloroacetonitrile has been used as an insecticide. No data are available on uses for the other haloacetonitriles.
TYPICAL VALUES IN AUSTRALIAN DRINKING WATER
No data are available on concentrations of haloacetonitriles in Australian drinking waters”. ADWG 2011