Sea Lake (Victoria) – Trichloroacetic Acid

2016/17: Sea Lake  0.100mg/L Trichloroacetic Acid

Australian Guidelines Trichloroacetic Acid 0.100mg/L, Dichloroacetic Acid 0.100mg/L

“Chloroacetic acids are produced in drinking water as by-products of the reaction between chlorine and naturally occurring humic and fulvic acids. Concentrations reported overseas range up to 0.16mg/L and are typically about half the chloroform concentration. The chloroacetic acids are used commercially as reagents or intermediates in the preparation of a wide variety of chemicals. Monochloroacetic acid can be used as a pre-emergent herbicide, dichloroacetic acid as an ingredient in some pharmaceutical products, and trichloroacetic acid as a herbicide, soil sterilant and antiseptic.” Australian Drinking Water Guidelines – National Health and Medical Research Council…

There are no epidemiological studies of TCA carcinogenicity in humans. Most of the human health data for chlorinated acetic acids concern components of complex mixtures of water disinfectant by-products. These complex mixtures of disinfectant by-products have been associated with increased potential for bladder, rectal, and colon cancer in humans [reviewed by Boorman et al. (1999); Mills et al. (1998)].” Ref: tmp/Trichloroacetic acid (TCA) CASRN 76-03-9 IRIS US EPA.htm

Sea Lake – Victoria – Turbidity

2012/13: Sea Lake (Victoria) – Turbidity 15 NTU (Maximum detection during year)

2013/14: Sea Lake (Victoria) – Turbidity 6.6 NTU (Maximum detection during year)

2015/16: Sea Lake (Victoria) – Turbidity 5.8 NTU (Maximum detection during year)

2016/17: Sea Lake (Victoria) – Turbidity 5.5 NTU (Maximum detection during year)

Chlorine-resistant pathogen reduction: Where filtration alone is used as the water treatment
process to address identified risks from Cryptosporidium and Giardia, it is essential
that filtration is optimised and consequently the target for the turbidity of water leaving
individual filters should be less than 0.2 NTU, and should not exceed 0.5 NTU at any time
Disinfection: A turbidity of less than 1 NTU is desirable at the time of disinfection with
chlorine unless a higher value can be validated in a specific context.

Aesthetic: Based on aesthetic considerations, the turbidity should not exceed 5 NTU at the
consumer’s tap.

Sea Lake – Victoria – Iron

2012/13: Sea Lake (Victoria)  – Iron 0.58mg/L (Highest level only)

Based on aesthetic considerations (precipitation of iron from solution and taste),
the concentration of iron in drinking water should not exceed 0.3 mg/L.
No health-based guideline value has been set for iron.

Iron has a taste threshold of about 0.3 mg/L in water, and becomes objectionable above 3 mg/L. High iron concentrations give water an undesirable rust-brown appearance and can cause staining of laundry and plumbing fittings, fouling of ion-exchange softeners, and blockages in irrigation systems. Growths of iron bacteria, which concentrate iron, may cause taste and odour problems and lead to pipe restrictions, blockages and corrosion. ADWG 2011

2012/17 – Sea Lake (Victoria) – Trichloroacetic Acid, Turbidity, Iron

Sea Lake (Victoria) – Trichloroacetic Acid

2016/17: Sea Lake  0.100mg/L Trichloroacetic Acid

Australian Guidelines Trichloroacetic Acid 0.100mg/L, Dichloroacetic Acid 0.100mg/L

“Chloroacetic acids are produced in drinking water as by-products of the reaction between chlorine and naturally occurring humic and fulvic acids. Concentrations reported overseas range up to 0.16mg/L and are typically about half the chloroform concentration. The chloroacetic acids are used commercially as reagents or intermediates in the preparation of a wide variety of chemicals. Monochloroacetic acid can be used as a pre-emergent herbicide, dichloroacetic acid as an ingredient in some pharmaceutical products, and trichloroacetic acid as a herbicide, soil sterilant and antiseptic.” Australian Drinking Water Guidelines – National Health and Medical Research Council…

There are no epidemiological studies of TCA carcinogenicity in humans. Most of the human health data for chlorinated acetic acids concern components of complex mixtures of water disinfectant by-products. These complex mixtures of disinfectant by-products have been associated with increased potential for bladder, rectal, and colon cancer in humans [reviewed by Boorman et al. (1999); Mills et al. (1998)].” Ref: tmp/Trichloroacetic acid (TCA) CASRN 76-03-9 IRIS US EPA.htm

Sea Lake – Victoria – Turbidity

2012/13: Sea Lake (Victoria) – Turbidity 15 NTU (Maximum detection during year)

2013/14: Sea Lake (Victoria) – Turbidity 6.6 NTU (Maximum detection during year)

2015/16: Sea Lake (Victoria) – Turbidity 5.8 NTU (Maximum detection during year)

2016/17: Sea Lake (Victoria) – Turbidity 5.5 NTU (Maximum detection during year)

Chlorine-resistant pathogen reduction: Where filtration alone is used as the water treatment
process to address identified risks from Cryptosporidium and Giardia, it is essential
that filtration is optimised and consequently the target for the turbidity of water leaving
individual filters should be less than 0.2 NTU, and should not exceed 0.5 NTU at any time
Disinfection: A turbidity of less than 1 NTU is desirable at the time of disinfection with
chlorine unless a higher value can be validated in a specific context.

Aesthetic: Based on aesthetic considerations, the turbidity should not exceed 5 NTU at the
consumer’s tap.

Sea Lake – Victoria – Iron

2012/13: Sea Lake (Victoria)  – Iron 0.58mg/L (Highest level only)

Based on aesthetic considerations (precipitation of iron from solution and taste),
the concentration of iron in drinking water should not exceed 0.3 mg/L.
No health-based guideline value has been set for iron.

Iron has a taste threshold of about 0.3 mg/L in water, and becomes objectionable above 3 mg/L. High iron concentrations give water an undesirable rust-brown appearance and can cause staining of laundry and plumbing fittings, fouling of ion-exchange softeners, and blockages in irrigation systems. Growths of iron bacteria, which concentrate iron, may cause taste and odour problems and lead to pipe restrictions, blockages and corrosion. ADWG 2011