2011/14+ 2018/19 – Tuggeranong (Australian Capital Territory) – Plasticiser, Lead, Trichloroacetic Acid, Antimony

2013/14 – Tuggeranong (Australian Capital Territory) – Placticiser – Water Quality Zone 4

2013/14: Tuggeranong (ACT) – Bis(2-ethylhexyl) phthalate 16ug/L (14.65ug/L 95th percentile)

Icon Water Annual Drinking Water Quality Report 2013/14

Di(2-ethylhexyl) phthalate: Based on health considerations, concentrations in drinking water should not exceed 0.01 mg/L.
Di(2-ethylhexyl) adipate: The data are inadequate to determine a guideline value.
DEHP and DEHA are commonly used plasticisers in flexible polyvinyl chloride products. They may be present in drinking water that has been in contact with these products for long periods of time, or as the result of industrial spills. Overseas studies have detected DEHP in drinking water on a few occasions at concentrations from 0.00005 mg/L (50 ng/L) to 0.01 mg/L. DEHA has been detected at concentrations between 0.000001 mg/L (1 ng/L) to 0.0001 mg/L (100 ng/L) in treated drinking water.
DEHP is the most widely used plasticiser. It is also used as a replacement for polychlorinated biphenyls (PCBs) in electrical capacitors. DEHA is used as a lubricant and in hydraulic fluids. Exposure to DEHP and DEHA is widespread because of the broad range of products using these plasticisers. Food is the major source of exposure, and it has been estimated that adult daily intake of DEHP and DEHA, as a result of consumption of food in contact with plastic products, is 0.2 mg to 16 mg.
People receiving kidney dialysis treatment may be exposed to much higher amounts of these plasticisers. In the United States it has been estimated that each dialysis patient could be receiving up to 90 mg of DEHP per treatment.”

2011/12 – Tuggeranong (Australian Capital Territory) Lead – Water Quality Zone 4

2011/12 – Tuggeranong (Australian Capital Territory) – Lead 14ug/L

Lead Australian Drinking Water Guideline 0.01mg/L

“… Lead can be present in drinking water as a result of dissolution from natural sources, or from household plumbing systems containing lead. These may include lead in pipes, or in solder used to seal joints. The amount of lead dissolved will depend on a number of factors including pH, water hardness and the standing time of the water.

Lead is the most common of the heavy metals and is mined widely throughout the world. It is used in the production of lead acid batteries, solder, alloys, cable sheathing, paint pigments, rust inhibitors, ammunition, glazes and plastic stabilisers. The organo-lead compounds tetramethyl and tetraethyl lead are used extensively as anti-knock and lubricating compounds in gasoline…ADWG 2011

2012/13 – Tuggeranong (Australian Capital Territory) – Trichloroacetic Acid – Water Quality Zone 4

2012/13 – Tuggeranong (Australian Capital Territory) – Trichloroacectic Acid 0.098mg/L (max), 0.0796 (av)

Australian Guidelines Trichloroacetic Acid 0.100mg/L

“Chloroacetic acids are produced in drinking water as by-products of the reaction between chlorine and naturally occurring humic and fulvic acids. Concentrations reported overseas range up to 0.16mg/L and are typically about half the chloroform concentration. The chloroacetic acids are used commercially as reagents or intermediates in the preparation of a wide variety of chemicals. Monochloroacetic acid can be used as a pre-emergent herbicide, dichloroacetic acid as an ingredient in some pharmaceutical products, and trichloroacetic acid as a herbicide, soil sterilant and antiseptic.” Australian Drinking Water Guidelines – National Health and Medical Research Council…

There are no epidemiological studies of TCA carcinogenicity in humans. Most of the human health data for chlorinated acetic acids concern components of complex mixtures of water disinfectant by-products. These complex mixtures of disinfectant by-products have been associated with increased potential for bladder, rectal, and colon cancer in humans [reviewed by Boorman et al. (1999); Mills et al. (1998)].” Ref: tmp/Trichloroacetic acid (TCA) CASRN 76-03-9 IRIS US EPA.htm

2018/19 – Tuggeranong (Australian Capital Territory) – Antimony – Water Quality Zone 4

2018/19 – Tuggeranong (Australian Capital Territory)

Antimony 23ug/L

Based on health considerations, the concentration of antimony in drinking water should not
exceed the limit of determination of 0.003 mg/L.
Antimony, as the trivalent (Sb(III)) or pentavalent (Sb(V)) salts, has occasionally been detected in
natural source waters. Occurrences are more common in areas near lead or copper smelting operations.
Antimony–tin solder is beginning to replace lead solder and hence exposure to antimony in drinking water may increase in the future.
Antimony alloys and compounds are used in semiconductors, batteries, anti-friction compounds, ammunition, cable sheathing, and flame-proofing compounds. Antimony salts are used in glass, and in the manufacture of ceramics and pottery.
Studies overseas have generally found low concentrations in drinking water, typically less than
0.005 mg/L, but higher concentrations have been reported occasionally.
There are few data available on antimony concentrations in food. The United States Agency for Toxic Substances and Disease Registry has suggested that average daily consumption of antimony in food is about 0.018 mg.