2014/15 – Peter Faust Dam (Queensland) – Chlorine

2014/15: Peter Faust Dam (Queensland) – Free Chlorine 12mg/L (max), 2.4mg/L (mean)

GENERAL DESCRIPTION
Chlorine dissociates in water to form free chlorine, which consists of aqueous molecular chlorine, hypochlorous acid and hypochlorite ion. Chlorine and hypochlorites are toxic to microorganisms and are used extensively as disinfectants for drinking water supplies. Chlorine is also used to disinfect sewage and wastewater, swimming pool water, in-plant supplies, and industrial cooling water.

Chlorine has an odour threshold in drinking water of about 0.6 mg/L, but some people are particularly sensitive and can detect amounts as low as 0.2 mg/L. Water authorities may need to exceed the odour threshold value of 0.6 mg/L in order to maintain an effective disinfectant residual.

In the food industry, chlorine and hypochlorites are used for general sanitation and for odour control. Large amounts of chlorine are used in the production of industrial and domestic disinfectants and bleaches, and it is used in the synthesis of a large range of chemical compounds.

Free chlorine reacts with ammonia and certain nitrogen compounds to form combined chlorine. With ammonia, chlorine forms chloramines (monochloramine, dichloramine and nitrogen trichloride or trichloramine) (APHA 2012). Chloramines are used for disinfection but are weaker oxidising agents than free chlorine.

Free chlorine and combined chlorine may be present simultaneously (APHA 2012). The term totalchlorine refers to the sum of free chlorine and combined chlorine present in a sample.

Chlorine (Free) ADWG Guideline: 5mg/L (Chlorine in chloraminated supplies 4.1mg/L). Chlorine dissociates in water to form free chlorine, which consists of aqueous molecular chlorine, hypochlorous acid and hypochlorite ion.

Chlorine (Total) ADWG Guideline 5mg/L (chloraminated supplies 4.1mg/L): The term total chlorine refers to the sum of free chlorine and combined chlorine present in a sample

2014/15 – Peter Faust Dam (Queensland) – Turbidity

2014/15:  Peter Faust Dam (Queensland) – Turbidity 7.9 NTU (max), 0.83 NTU (mean)

Chlorine-resistant pathogen reduction: Where filtration alone is used as the water treatment
process to address identified risks from Cryptosporidium and Giardia, it is essential
that filtration is optimised and consequently the target for the turbidity of water leaving
individual filters should be less than 0.2 NTU, and should not exceed 0.5 NTU at any time
Disinfection: A turbidity of less than 1 NTU is desirable at the time of disinfection with
chlorine unless a higher value can be validated in a specific context.

Aesthetic: Based on aesthetic considerations, the turbidity should not exceed 5 NTU at the
consumer’s tap

2017/18: Peter Faust Dam (Queensland) – pH (acidic)

2017/18: Two (2) instances where treated water pH exceeded the ADWG aesthetic minimum limit of 6.5.

Based on the need to reduce corrosion and encrustation in pipes and fittings, the pH of
drinking water should be between 6.5 and 8.5.

New concrete tanks and cement-mortar lined pipes can significantly increase pH and
a value up to 9.2 may be tolerated, provided monitoring indicates no deterioration in
microbiological quality.

pH is a measure of the hydrogen ion concentration of water. It is measured on a logarithmic scale from 0 to 14. A pH of 7 is neutral, greater than 7 is alkaline, and less than 7 is acidic.

One of the major objectives in controlling pH is to minimise corrosion and encrustation in pipes and fittings. Corrosion can be reduced by the formation of a protective layer of calcium carbonate on the inside of the pipe or fitting, and the formation of this layer is affected by pH, temperature, the availability of calcium (hardness) and carbon dioxide. If the water is too alkaline (above pH 8.5), the rapid deposition and build-up of calcium carbonate that can result may eventually block the pipe.

2014/18 – Peter Faust Dam (Queensland) – Chlorine, Turbidity, pH

2014/15 – Peter Faust Dam (Queensland) – Chlorine

2014/15: Peter Faust Dam (Queensland) – Free Chlorine 12mg/L (max), 2.4mg/L (mean)

GENERAL DESCRIPTION
Chlorine dissociates in water to form free chlorine, which consists of aqueous molecular chlorine, hypochlorous acid and hypochlorite ion. Chlorine and hypochlorites are toxic to microorganisms and are used extensively as disinfectants for drinking water supplies. Chlorine is also used to disinfect sewage and wastewater, swimming pool water, in-plant supplies, and industrial cooling water.

Chlorine has an odour threshold in drinking water of about 0.6 mg/L, but some people are particularly sensitive and can detect amounts as low as 0.2 mg/L. Water authorities may need to exceed the odour threshold value of 0.6 mg/L in order to maintain an effective disinfectant residual.

In the food industry, chlorine and hypochlorites are used for general sanitation and for odour control. Large amounts of chlorine are used in the production of industrial and domestic disinfectants and bleaches, and it is used in the synthesis of a large range of chemical compounds.

Free chlorine reacts with ammonia and certain nitrogen compounds to form combined chlorine. With ammonia, chlorine forms chloramines (monochloramine, dichloramine and nitrogen trichloride or trichloramine) (APHA 2012). Chloramines are used for disinfection but are weaker oxidising agents than free chlorine.

Free chlorine and combined chlorine may be present simultaneously (APHA 2012). The term totalchlorine refers to the sum of free chlorine and combined chlorine present in a sample.

Chlorine (Free) ADWG Guideline: 5mg/L (Chlorine in chloraminated supplies 4.1mg/L). Chlorine dissociates in water to form free chlorine, which consists of aqueous molecular chlorine, hypochlorous acid and hypochlorite ion.

Chlorine (Total) ADWG Guideline 5mg/L (chloraminated supplies 4.1mg/L): The term total chlorine refers to the sum of free chlorine and combined chlorine present in a sample

2014/15 – Peter Faust Dam (Queensland) – Turbidity

2014/15:  Peter Faust Dam (Queensland) – Turbidity 7.9 NTU (max), 0.83 NTU (mean)

Chlorine-resistant pathogen reduction: Where filtration alone is used as the water treatment
process to address identified risks from Cryptosporidium and Giardia, it is essential
that filtration is optimised and consequently the target for the turbidity of water leaving
individual filters should be less than 0.2 NTU, and should not exceed 0.5 NTU at any time
Disinfection: A turbidity of less than 1 NTU is desirable at the time of disinfection with
chlorine unless a higher value can be validated in a specific context.

Aesthetic: Based on aesthetic considerations, the turbidity should not exceed 5 NTU at the
consumer’s tap

2017/18: Peter Faust Dam (Queensland) – pH (acidic)

2017/18: Two (2) instances where treated water pH exceeded the ADWG aesthetic minimum limit of 6.5.

Based on the need to reduce corrosion and encrustation in pipes and fittings, the pH of
drinking water should be between 6.5 and 8.5.

New concrete tanks and cement-mortar lined pipes can significantly increase pH and
a value up to 9.2 may be tolerated, provided monitoring indicates no deterioration in
microbiological quality.

pH is a measure of the hydrogen ion concentration of water. It is measured on a logarithmic scale from 0 to 14. A pH of 7 is neutral, greater than 7 is alkaline, and less than 7 is acidic.

One of the major objectives in controlling pH is to minimise corrosion and encrustation in pipes and fittings. Corrosion can be reduced by the formation of a protective layer of calcium carbonate on the inside of the pipe or fitting, and the formation of this layer is affected by pH, temperature, the availability of calcium (hardness) and carbon dioxide. If the water is too alkaline (above pH 8.5), the rapid deposition and build-up of calcium carbonate that can result may eventually block the pipe.