2014 March + 2016/17 – Ridgehaven (South Australia) – Trihalomethanes

Center map
Traffic
Bicycling
Transit

Ridgehaven (South Australia) – Trihalomethanes

Breaches to Australian Drinking Water Guidelines Levels Only

17/03/2014 Ridgehaven Lynore Road Trihalomethanes – Total 252 ug/L

Trihalomethanes Australian Guideline Level 250μg/L (0.25mg/L)

Why and how are THMs formed?
“When chlorine is added to water with organic material, such as algae, river weeds, and decaying leaves, THMs are formed. Residual chlorine molecules react with this harmless organic material to form a group of chlorinated chemical compounds, THMs. They are tasteless and odourless, but harmful and potentially toxic. The quantity of by-products formed is determined by several factors, such as the amount and type of organic material present in water, temperature, pH, chlorine dosage, contact time available for chlorine, and bromide concentration in the water. The organic matter in water mainly consists of a) humic substance, which is the organic portion of soil that remains after prolonged microbial decomposition formed by the decay of leaves, wood, and other vegetable matter; and b) fulvic acid, which is a water soluble substance of low molecular weight that is derived from humus”. Source: http://water.epa.gov/drink/contaminants/in

Ridgehaven – South Australia – Temperature

November 30 2016: Ridgehaven (South Australia) Lynore Rd – Temperature 23C

December 6 2016: Ridgehaven (South Australia) Lynore Rd – Temperature 22C

December 14 2016: Ridgehaven (South Australia) Lynore Rd – Temperature 23C

December 21 2016: Ridgehaven (South Australia) Lynore Rd – Temperature 21C

December 28 2016: Ridgehaven (South Australia) Lynore Rd – Temperature 24C

January 5 2017: Ridgehaven (South Australia) Lynore Rd – Temperature 25C

January 11 2017: Ridgehaven (South Australia) Lynore Rd – Temperature 26C

January 18 2017: Ridgehaven (South Australia) Lynore Rd – Temperature 25C

January 25 2017: Ridgehaven (South Australia) Lynore Rd – Temperature 26C

February 1 2017: Ridgehaven (South Australia) Lynore Rd – Temperature 26C

February 8 2017: Ridgehaven (South Australia) Lynore Rd – Temperature 26C

February 16 2017: Ridgehaven (South Australia) Lynore Rd – Temperature 26C

February 22 2017: Ridgehaven (South Australia) Lynore Rd – Temperature 26C

February 28 2017: Ridgehaven (South Australia) Lynore Rd – Temperature 22C

March 8 2017: Ridgehaven (South Australia) Lynore Rd – Temperature 25C

March 14 2017: Ridgehaven (South Australia) Lynore Rd – Temperature 26C

March 22 2017: Ridgehaven (South Australia) Lynore Rd – Temperature 25C

March 29 2017: Ridgehaven (South Australia) Lynore Rd – Temperature 23C

April 5 2017: Ridgehaven (South Australia) Lynore Rd – Temperature 21C

April 12 2017: Ridgehaven (South Australia) Lynore Rd – Temperature 22C

April 18 2017: Ridgehaven (South Australia) Lynore Rd – Temperature 22C

April 24 2017: Ridgehaven (South Australia) Lynore Rd – Temperature 21C

 

GUIDELINE

“No guideline is set due to the impracticality of controlling water temperature.
Drinking water temperatures above 20°C may result in an increase in the number of
complaints.

Temperature is primarily an aesthetic criterion for drinking water. Generally, cool water is more palatable than warm or cold water. In general, consumers will react to a change in water temperature. Complaints are most frequent when the temperature suddenly increases.

The turbidity and colour of filtered water may be indirectly affected by temperature, as low water temperatures tend to decrease the efficiency of water treatment processes by, for instance, affecting floc formation rates and sedimentation efficiency.

Chemical reaction rates increase with temperature, and this can lead to greater corrosion of pipes and fittings in closed systems. Scale formation in hard waters will also be greater at higher temperatures…

Water temperatures in major Australian reticulated supplies range from 10°C to 30°C. In some long, above-ground pipelines, water temperatures up to 45°C may be experienced…

The effectiveness of chlorine as a disinfectant is influenced by the temperature of the water being dosed. Generally higher temperatures result in more effective disinfection at a particular chlorine dose, but this may be counterbalanced by a more rapid loss of chlorine to the atmosphere (AWWA 1990).

Chlorine reacts with organic matter in water to produce undesirable chlorinated organic by-products, and higher temperatures increase the rate of these reactions.

Temperature can directly affect the growth and survival of microorganisms. In general the survival time of infectious bacteria and parasites is reduced as the temperature of the contaminated water increases.

Australian Drinking Water Guidelines 2011