2014-18 – Leven River Penguin (Tasmania) – E.coli, Aluminium, Turbidity, Chromium

Leven River Penguin (Tasmania) – E.coli

February 16 2016: Leven River Penguin (Tasmania) Penguin Surf Club – E.coli 1 MPN100/mL

Escherichia coli should not be detected in any 100 mL sample of drinking water. If detected
in drinking water, immediate action should be taken including investigation of potential
sources of faecal contamination.

“Coliforms are Gram-negative, non-spore-forming, rod-shaped bacteria that are capable of aerobic and facultative anaerobic growth in the presence of bile salts or other surface active agents with similar growth-inhibiting properties. They are found in large numbers in the faeces of humans and other warm-blooded animals, but many species also occur in the environment.

Thermotolerant coliforms are a sub-group of coliforms that are able to grow at 44.5 ± 0.2°C. E. coli is the most common thermotolerant coliform present in faeces and is regarded as the most specific indicator of recent faecal contamination because generally it is not capable of growth in the environment. In contrast, some other thermotolerant coliforms (including strains of Klebsiella, Citrobacter and Enterobacter) are able to grow in the environment and their presence is not necessarily related to faecal contamination. While tests for thermotolerant coliforms can be simpler than for E. coli, E. coli is considered a superior indicator for detecting faecal contamination…” ADWG 2011

Leven River Penguin (Tasmania) – Aluminium

May 6 2014: Leven River Penguin (Tasmania) Patrick St – Aluminium 1.16 mg/L

June 10 2014: Leven River Penguin (Tasmania) Patrick St – Aluminium 1.05 mg/L

January 12 2016: Leven River Penguin (Tasmania) Patrick St – Aluminium 0.669 mg/L

April 6 2016: Leven River Penguin (Tasmania) WTP – Aluminium 0.543 mg/L

April 6 2016: Leven River Penguin (Tasmania) WTP – Aluminium Acid Soluble 0.538 mg/L

According to the ADWG, no health guideline has been adopted for Aluminium, but that the issue is still open to review. Aluminium can come from natural geological sources or from the use of aluminium salts as coagulants in water treatment plants. According to the ADWG “A well-operated water filtration plant (even using aluminium as a flocculant) can achieve aluminium concentrations in the finished water of less than 0.1 mg/L.

The most common form of aluminium in water treatment plants is Aluminium Sulfate (Alum). Alum can be supplied as a bulk liquid or in granular form. It is used at water treatment plants as a coagulant to remove turbidity, microorganisms, organic matter and inorganic chemicals. If water is particularly dirty an Alum dose of as high as 500mg/L could occur. There is also concern that other metals may also exist in refined alum.

While the ADWG mentions that there is considerable evidence that Aluminium is neurotoxic and can pass the gut barrier to accumulate in the blood, leading to a condition called encephalopathy (dialysis dementia) and that Aluminium has been associated with Parkinsonism dementia and amyotrophic lateral sclerosis, the NHMRC, whilst also acknowledging studies which have linked Aluminium with Alzheimer disease, has not granted Aluminium a NOEL (No Observable Effect Level) due to insufficient and contradictory data. Without a NOEL, a health guideline cannot be established. The NHMRC has also stated that if new information comes to hand, a health guideline may be established in the future.

In communication with Aluminium expert Dr Chris Exley (Professor in Bioinorganic Chemistry
The Birchall Centre, Lennard-Jones Laboratories, Keele University, Staffordshire UK) in March 2013 regarding high levels of Aluminium detected in the South Western Victorian town of Hamilton
“It is my opinion that any value above 0.5 mg/L is totally unacceptable and a potential health risk. Where such values are maintained over days, weeks or even months, as indeed is indicated by the data you sent to me, these represent a significant health risk to all consumers. While consumers may not experience any short term health effects the result of longer term exposure to elevated levels of aluminium in potable waters may be a significant increase in the body burden of aluminium in these individuals. This artificially increased body burden will not return to ‘normal’ levels when the Al content of the potable water returns to normal but will act as a new platform level from which the Al body burden will continue to increase with age.

Leven River Penguin – Tasmania – Turbidity

January 19 2016: Leven River Penguin (Tasmania) Penguin Surf Club- Turbidity 7.21 NTU

2017/18: Leven River Penguin (Tasmania) Turbidity 7.7 NTU (max), 0.83 NTU (mean)

Chlorine-resistant pathogen reduction: Where filtration alone is used as the water treatment
process to address identified risks from Cryptosporidium and Giardia, it is essential
that filtration is optimised and consequently the target for the turbidity of water leaving
individual filters should be less than 0.2 NTU, and should not exceed 0.5 NTU at any time
Disinfection: A turbidity of less than 1 NTU is desirable at the time of disinfection with
chlorine unless a higher value can be validated in a specific context.
Aesthetic: Based on aesthetic considerations, the turbidity should not exceed 5 NTU at the
consumer’s tap.

Leven River Penguin (Tasmania) – Chromium

2016/17  – Leven River Penguin (Chromium) – Chromium 0.0533mg/L

Based on health considerations, the concentration of hexavalent chromium (Cr(VI)) in
drinking water should not exceed 0.05 mg/L. If the concentration of total chromium exceeds
this value then a separate analysis for hexavalent chromium should be undertaken.
Chromium is present in the environment in the trivalent (Cr(III)) and hexavalent (Cr(VI)) states.
Trivalent chromium is the most common naturally occurring state. Most soils and rocks contain small amounts of chromium oxide, and weathering, oxidation and bacterial action convert this insoluble compound into soluble Cr(III) salts.
Trivalent chromium salts are used in leather tanning, manufacture of catalysts, paint pigments, fungicides, and ceramic and glass manufacture. Trivalent chromium is an essential trace element for humans, with food being the major source of intake.
Hexavalent chromium occurs infrequently in nature. Its presence in water is generally the result of industrial and domestic chromium waste discharges. Hexavalent chromium compounds are used in the metallurgical industry for chrome alloy and chrome metal production, and in the chemical industry as oxidising agents.
Hexavalent chromium is not considered to be an essential nutrient and harmful effects due to chromium have been attributed to this form.
Total chromium concentrations in drinking water are usually less than 0.005 mg/L although
concentrations between 0.06 mg/L to 0.12 mg/L have been reported overseas.
In major Australian reticulated supplies concentrations of total chromium range up to 0.03 mg/L, with typical concentrations usually less than 0.005 mg/L.