23/2/22 – Carmila (Queensland) – E.coli

23/2/22: Carmila (Queensland). E.coli 5.3MPN/100ml

“E.coli

Thermotolerant coliforms are a sub-group of coliforms that are able to grow at 44.5 ± 0.2°C. E. coli is the most common thermotolerant coliform present in faeces and is regarded as the most specific indicator of recent faecal contamination because generally it is not capable of growth in the environment. In contrast, some other thermotolerant coliforms (including strains of Klebsiella, Citrobacter and Enterobacter) are able to grow in the environment and their presence is not necessarily related to faecal contamination. While tests for thermotolerant coliforms can be simpler than for E. coli, E. coli is considered a superior indicator for detecting faecal contamination…” ADWG

Carmila – (Queensland) Chlorate

2/11/21: Carmila (Qld) Chlorate 1.54mg/L.

Chlorate: No ADWG Guideline. Queensland Health Limit 0.8mg/L

Chlorite: ADWG Health 0.3mg/L.

Chlorite and chlorate are disinfection by-products of chlorine dioxide disinfection process.

“… industry are having serious problems meeting chlorite/chlorate limits that were proposed in the new Australian Drinking Water Guidelines, especially for disinfection in long distance pipelines that are dosed with sodium hyptochlorite” pers comm 18/5/11.

“Chlorite occurs in drinking water when chlorine dioxide is used for purification purposes. The
International Agency for Research on Cancer (IARC) has concluded that chlorite is not classifiable as carcinogenic to humans and is listed in the Group 3 category. Changes in red blood vessels due to oxidative stress are a major concern with excessive levels of Chlorite in drinking water. According to the US EPA, potential health problems for people drinking Chorite above safe drinking water guideline include: Anemia in infants and young children and nervous system effects.” https://water.epa.gov/drink/contaminants/index.cfm

“Chlorine dioxide (chlorite) is rarely used as a disinfectant in Australian reticulated supplies.
When used, the chlorite residual is generally maintained between 0.2mg/L and 0.4mg/L. It is particularly effective inthe control of manganese-reducing bacteria. Few data are available on chlorate levels in Australian water supplies….Chlorine dioxide, chlorite, and chlorate are all absorbed rapidly by the gastrointestinal tract into blood plasma and distributed to the major
organs. All compounds appear to be rapidly metabolised. Chlorine dioxide has been shown to impair neurobehavioural and neurological development in rats exposed before birth. Experimental studies with rats and monkeys exposed to chlorine dioxide in drinking water have shown some evidence of thyroid toxicity; however, because of the studies’ limitations, it is difficult to draw firm conclusions (WHO 2005) The primary concern with chlorite and chlorate is oxidative stress resulting in changes in red blood cells. This end point is seen in laboratory animals and, by analogy with chlorate, in humans exposed to high doses in poisoning incidents (WHO 2005).” Australian Drinking Water Guidelines – National Health and Medical Research Centre

“…Subchronic studies in animals (cats, mice, rats and monkeys) indicate that chlorite and chlorate cause haematological changes (osmotic fragility, oxidative stress, increase in mean corpuscular volume), stomach lesions and increased spleen and adrenal weights… Neurobehavioural effects (lowered auditory startle amplitude, decreased brain weight and decreased exploratory activity) are the most sensitive endpoints following oral exposure to chlorite…” https://www.hc-sc.gc.ca/ewh-semt/pubs/water-eau/chlorite-chlorate/indexeng.
php#sec10_1Guidelines for Canadian Drinking Water Quality.

Carmila (Queensland) – Iron

2022/2023:  Carmila (Queensland) – Iron 0.99mg/L (max), 0.037mg/L (mean)

Based on aesthetic considerations (precipitation of iron from solution and taste), the concentration of iron in drinking water should not exceed 0.3 mg/L.
No health-based guideline value has been set for iron.

Iron has a taste threshold of about 0.3 mg/L in water, and becomes objectionable above 3 mg/L. High iron concentrations give water an undesirable rust-brown appearance and can cause staining of laundry and plumbing fittings, fouling of ion-exchange softeners, and blockages in irrigation systems. Growths of iron bacteria, which concentrate iron, may cause taste and odour problems and lead to pipe restrictions, blockages and corrosion. ADWG 2011

Carmila (Queensland) – Dissolved Oxygen

2016/17: Carmilla (Queensland) Dissolved Oxygen 100% (max), av. 83.49%. 9 exceedences during year.

2017/18: Carmilla (Queensland) Dissolved Oxygen 104.39% (max), av. 94.31 (av.) 2 exceedences during year.

Based on aesthetic considerations, it is desirable that the dissolved oxygen concentration in drinking water be greater than 85% saturation.
No health-based guideline value has been set for dissolved oxygen.
GENERAL DESCRIPTION
Drinking water will generally contain an adequate concentration of dissolved oxygen; however, under some circumstances the oxygen concentration may be reduced. This may occur, for instance, where water has been drawn from deep storages, where there is considerable growth of microorganisms in a distribution system, or following prolonged periods of high water temperature.
Low oxygen concentrations or anoxic conditions enable nuisance anaerobic microorganisms to grow, producing by-products that affect the aesthetic quality of the water and increase corrosion of pipes and fittings.
There are a number of such nuisance microorganisms. Manganese-reducing bacteria produce black manganese deposits which can slough off pipes and soil laundry. Sulfate-reducing bacteria can produce hydrogen sulfide, giving drinking water a ‘rotten egg’ smell. Nitrate-reducing bacteria can produce nitrite. Iron-reducing bacteria can increase the concentration of ferrous ion in solution which will lead to the deposition of insoluble ferric salts when aeration is increased.
Localised pH changes associated with the growth of nuisance microorganisms can cause rapid corrosion in metal pipes.
Water from groundwater sources will generally have low oxygen concentrations and while this may cause no difficulties for most supplies, some supplies may need aeration to improve water quality (e.g. taste and odour). ADWG 2011

2016/22 – Carmila (Queensland) – E.coli, Chlorate, Iron, Dissolved Oxygen

23/2/22 – Carmila (Queensland) – E.coli 23/2/22: Carmila (Queensland). E.coli 5.3MPN/100ml
“E.coli
Thermotolerant coliforms are a sub-group of coliforms that are able to grow at 44.5 ± 0.2°C. E. coli is the most common thermotolerant coliform present in faeces and is regarded as the most specific indicator of recent faecal contamination because generally it is not capable of growth in the environment. In contrast, some other thermotolerant coliforms (including strains of Klebsiella, Citrobacter and Enterobacter) are able to grow in the environment and their presence is not necessarily related to faecal contamination. While tests for thermotolerant coliforms can be simpler than for E. coli, E. coli is considered a superior indicator for detecting faecal contamination…” ADWG Carmila – (Queensland) Chlorate 2/11/21: Carmila (Qld) Chlorate 1.54mg/L. Chlorate: No ADWG Guideline. Queensland Health Limit 0.8mg/L Chlorite: ADWG Health 0.3mg/L. Chlorite and chlorate are disinfection by-products of chlorine dioxide disinfection process. “… industry are having serious problems meeting chlorite/chlorate limits that were proposed in the new Australian Drinking Water Guidelines, especially for disinfection in long distance pipelines that are dosed with sodium hyptochlorite” pers comm 18/5/11. “Chlorite occurs in drinking water when chlorine dioxide is used for purification purposes. The International Agency for Research on Cancer (IARC) has concluded that chlorite is not classifiable as carcinogenic to humans and is listed in the Group 3 category. Changes in red blood vessels due to oxidative stress are a major concern with excessive levels of Chlorite in drinking water. According to the US EPA, potential health problems for people drinking Chorite above safe drinking water guideline include: Anemia in infants and young children and nervous system effects.” https://water.epa.gov/drink/contaminants/index.cfm “Chlorine dioxide (chlorite) is rarely used as a disinfectant in Australian reticulated supplies. When used, the chlorite residual is generally maintained between 0.2mg/L and 0.4mg/L. It is particularly effective inthe control of manganese-reducing bacteria. Few data are available on chlorate levels in Australian water supplies….Chlorine dioxide, chlorite, and chlorate are all absorbed rapidly by the gastrointestinal tract into blood plasma and distributed to the major organs. All compounds appear to be rapidly metabolised. Chlorine dioxide has been shown to impair neurobehavioural and neurological development in rats exposed before birth. Experimental studies with rats and monkeys exposed to chlorine dioxide in drinking water have shown some evidence of thyroid toxicity; however, because of the studies’ limitations, it is difficult to draw firm conclusions (WHO 2005) The primary concern with chlorite and chlorate is oxidative stress resulting in changes in red blood cells. This end point is seen in laboratory animals and, by analogy with chlorate, in humans exposed to high doses in poisoning incidents (WHO 2005).” Australian Drinking Water Guidelines – National Health and Medical Research Centre “…Subchronic studies in animals (cats, mice, rats and monkeys) indicate that chlorite and chlorate cause haematological changes (osmotic fragility, oxidative stress, increase in mean corpuscular volume), stomach lesions and increased spleen and adrenal weights… Neurobehavioural effects (lowered auditory startle amplitude, decreased brain weight and decreased exploratory activity) are the most sensitive endpoints following oral exposure to chlorite…” https://www.hc-sc.gc.ca/ewh-semt/pubs/water-eau/chlorite-chlorate/indexeng. php#sec10_1Guidelines for Canadian Drinking Water Quality. Carmila (Queensland) – Iron 2022/2023:  Carmila (Queensland) – Iron 0.99mg/L (max), 0.037mg/L (mean) Based on aesthetic considerations (precipitation of iron from solution and taste), the concentration of iron in drinking water should not exceed 0.3 mg/L. No health-based guideline value has been set for iron. Iron has a taste threshold of about 0.3 mg/L in water, and becomes objectionable above 3 mg/L. High iron concentrations give water an undesirable rust-brown appearance and can cause staining of laundry and plumbing fittings, fouling of ion-exchange softeners, and blockages in irrigation systems. Growths of iron bacteria, which concentrate iron, may cause taste and odour problems and lead to pipe restrictions, blockages and corrosion. ADWG 2011 Carmila (Queensland) – Dissolved Oxygen 2016/17: Carmilla (Queensland) Dissolved Oxygen 100% (max), av. 83.49%. 9 exceedences during year. 2017/18: Carmilla (Queensland) Dissolved Oxygen 104.39% (max), av. 94.31 (av.) 2 exceedences during year. Based on aesthetic considerations, it is desirable that the dissolved oxygen concentration in drinking water be greater than 85% saturation. No health-based guideline value has been set for dissolved oxygen. GENERAL DESCRIPTION Drinking water will generally contain an adequate concentration of dissolved oxygen; however, under some circumstances the oxygen concentration may be reduced. This may occur, for instance, where water has been drawn from deep storages, where there is considerable growth of microorganisms in a distribution system, or following prolonged periods of high water temperature. Low oxygen concentrations or anoxic conditions enable nuisance anaerobic microorganisms to grow, producing by-products that affect the aesthetic quality of the water and increase corrosion of pipes and fittings. There are a number of such nuisance microorganisms. Manganese-reducing bacteria produce black manganese deposits which can slough off pipes and soil laundry. Sulfate-reducing bacteria can produce hydrogen sulfide, giving drinking water a ‘rotten egg’ smell. Nitrate-reducing bacteria can produce nitrite. Iron-reducing bacteria can increase the concentration of ferrous ion in solution which will lead to the deposition of insoluble ferric salts when aeration is increased. Localised pH changes associated with the growth of nuisance microorganisms can cause rapid corrosion in metal pipes. Water from groundwater sources will generally have low oxygen concentrations and while this may cause no difficulties for most supplies, some supplies may need aeration to improve water quality (e.g. taste and odour). ADWG 2011