2006? +2016-17 – Karumba (Queensland) – Lead, Trihalomethanes

2006?: Karumba (Queensland) – Lead

“…In Brisbane (Queensland), a study detected lead in 15% of harvested rainwater samples at
concentrations ranging from 0.01 ppm to 10.0 ppm (with one sample having a concentration of 85.0 ppm) [20]. In Sydney, Newcastle (New South Wales) and Esperance (Western Australia),
the situation was similar. Water sampled from rain water tanks in Sydney contained lead up to
0.35 ppm [22], up to 0.16 ppm in Esperance [23], and up to 5.77 ppm in Newcastle [24]. A tank in the town of Karumba in the Shire of Carpentaria, northern Queensland contained up to 100 ppm lead [14].

These results demonstrate a need for future epidemiological studies to determine whether there is a public health risk from these detected levels.”

Lead, Zinc, Copper, and Cadmium Content of Water from South Australian Rainwater Tanks
Chirhakarhula E. Chubaka  ID , Harriet Whiley ID , John W. Edwards and Kirstin E. Ross

Int. J. Environ. Res. Public Health 2018, 15, 1551; doi:10.3390/ijerph15071551


Lead Australian Drinking Water Guideline 0.01mg/L

“… Lead can be present in drinking water as a result of dissolution from natural sources, or from household plumbing systems containing lead. These may include lead in pipes, or in solder used to seal joints. The amount of lead dissolved will depend on a number of factors including pH, water hardness and the standing time of the water.

Karumba (Queensland) – Trihalomethanes

2016/17:  Karumba – Trihalomethanes 258μg/L (Highest Detection Only)

Annual Report  2016-17 Drinking Water Qu ality Management Plan December 2017

Carpentaria Water

Trihalomethanes Australian Guideline Level 250μg/L (0.25mg/L)

Why and how are THMs formed?
“When chlorine is added to water with organic material, such as algae, river weeds, and decaying leaves, THMs are formed. Residual chlorine molecules react with this harmless organic material to form a group of chlorinated chemical compounds, THMs. They are tasteless and odourless, but harmful and potentially toxic. The quantity of by-products formed is determined by several factors, such as the amount and type of organic material present in water, temperature, pH, chlorine dosage, contact time available for chlorine, and bromide concentration in the water. The organic matter in water mainly consists of a) humic substance, which is the organic portion of soil that remains after prolonged microbial decomposition formed by the decay of leaves, wood, and other vegetable matter; and b) fulvic acid, which is a water soluble substance of low molecular weight that is derived from humus”. US EPA