Loxton Country Roads (South Australia) – Monochloramines
2018/19: Loxton Country Roads (South Australia). Monochloramines 5mg/L (max), 3.79mg/L (av.) from over 50 samples.
According to the ADWG: “Based on health considerations, the concentration of monochloramine in drinking water should not exceed 3mg/L (equivalent to 4.1mg Cl as C12/L). [note: changed to 5mg Cl as C12/L in 2015].
Some water supplies may also be disinfected through a process called Chloramination where ammonia is added to the water prior to the chlorine, which in turn can create Monochloramines. Sunlight does not degrade Monochloramines to the same extent as chlorine, meaning that water can be stored for longer periods of time.
Loxton Country Roads (South Australia) – Chlorine
9/10/18: Loxton Country Roads (South Australia) Chlorine 5mg/L (max)
GENERAL DESCRIPTION
Chlorine dissociates in water to form free chlorine, which consists of aqueous molecular chlorine, hypochlorous acid and hypochlorite ion. Chlorine and hypochlorites are toxic to microorganisms and are used extensively as disinfectants for drinking water supplies. Chlorine is also used to disinfect sewage and wastewater, swimming pool water, in-plant supplies, and industrial cooling water.
Chlorine has an odour threshold in drinking water of about 0.6 mg/L, but some people are particularly sensitive and can detect amounts as low as 0.2 mg/L. Water authorities may need to exceed the odour threshold value of 0.6 mg/L in order to maintain an effective disinfectant residual.
In the food industry, chlorine and hypochlorites are used for general sanitation and for odour control. Large amounts of chlorine are used in the production of industrial and domestic disinfectants and bleaches, and it is used in the synthesis of a large range of chemical compounds.
Free chlorine reacts with ammonia and certain nitrogen compounds to form combined chlorine. With ammonia, chlorine forms chloramines (monochloramine, dichloramine and nitrogen trichloride or trichloramine) (APHA 2012). Chloramines are used for disinfection but are weaker oxidising agents than free chlorine.
Free chlorine and combined chlorine may be present simultaneously (APHA 2012). The term total chlorine refers to the sum of free chlorine and combined chlorine present in a sample.
Chlorine (Free) ADWG Guideline: 5mg/L (Chlorine in chloraminated supplies 4.1mg/L). Chlorine dissociates in water to form free chlorine, which consists of aqueous molecular chlorine, hypochlorous acid and hypochlorite ion.
Chlorine (Total) ADWG Guideline 5mg/L (chloraminated supplies 4.1mg/L): The term total chlorine refers to the sum of free chlorine and combined chlorine present in a sample
Loxton Country Roads (South Australia) – pH (alkaline)
Average pH: 2016/17: 8.685 pH units
Average pH: 2018/19: 8.725 pH units
Based on the need to reduce corrosion and encrustation in pipes and fittings, the pH of
drinking water should be between 6.5 and 8.5.
New concrete tanks and cement-mortar lined pipes can significantly increase pH and
a value up to 9.2 may be tolerated, provided monitoring indicates no deterioration in
microbiological quality.
pH is a measure of the hydrogen ion concentration of water. It is measured on a logarithmic scale from 0 to 14. A pH of 7 is neutral, greater than 7 is alkaline, and less than 7 is acidic.
One of the major objectives in controlling pH is to minimise corrosion and encrustation in pipes and fittings. Corrosion can be reduced by the formation of a protective layer of calcium carbonate on the inside of the pipe or fitting, and the formation of this layer is affected by pH, temperature, the availability of calcium (hardness) and carbon dioxide. If the water is too alkaline (above pH 8.5), the rapid deposition and build-up of calcium carbonate that can result may eventually block the pipe.
When pH is below 6.5 or above 11, the water may corrode plumbing fittings and pipes. This, however, will depend on other factors such as the material used, the concentration and type of ions in solution, the availability of oxygen, and the water temperature. Under some conditions, particularly in the presence of strong oxidising agents such as chlorine, water with a pH between 6.5 and 7 can be quite corrosive.
Chlorine disinfection efficiency is impaired above pH 8.0, although the optimum pH for monochloramine disinfectant formation is between 8.0 and 8.4. In chloraminated supplies chlorine can react with ammonia to form odorous nitrogen trichloride below pH 7.
Chlorination of water supplies can decrease the pH, while it can be significantly raised by lime leached from new concrete tanks or from pipes lined with asbestos cement or cement mortar. Values of pH above 9.5 can cause a bitter taste in drinking water, and can irritate skin if the water is used for ablutions.