St Lawrence – Queensland – Selenium
2015/16: St Lawrence (Queensland) – Selenium 1.32mg/L
GUIDELINE
“Based on health considerations, the concentration of selenium in drinking water should not exceed 0.01 mg/L.
Selenium and selenium salts are widespread in the environment. Selenium is released from natural and human-made sources, with the main source being the burning of coal. Selenium is also a by-product of the processing of sulfide ores, chiefly in the copper refining industry.
The major use of selenium is in the manufacture of electronic components. It is used in several other industries, and selenium compounds are used in some insecticides, in hair shampoos as an anti-dandruff agent, and as a nutritional feed additive for poultry and livestock.
Selenium concentrations in source waters are generally very low and depend on local geochemistry, pH and the presence of iron salts. Concentrations in drinking water supplies overseas are generally below 0.01 mg/L but groundwater concentrations as high as 6 mg/L have been reported in the United States.”
Australian Drinking Water Guidelines 2011
2018/21 St Lawrence (Queensland) – Trihalomethanes
7/3/18 – St Lawrence (Queensland) – Trihalomethanes 0.275ug/L network
5/5/21 – St Lawrence (Queensland) – Trihalomethanes 0.341ug/L ex clear well
Australian Drinking Water Guideline THM’s 0.25ug/L
Why and how are THMs formed?
“When chlorine is added to water with organic material, such as algae, river weeds, and decaying leaves, THMs are formed. Residual chlorine molecules react with this harmless organic material to form a group of chlorinated chemical compounds, THMs. They are tasteless and odourless, but harmful and potentially toxic. The quantity of by-products formed is determined by several factors, such as the amount and type of organic material present in water, temperature, pH, chlorine dosage, contact time available for chlorine, and bromide concentration in the water. The organic matter in water mainly consists of a) humic substance, which is the organic portion of soil that remains after prolonged microbial decomposition formed by the decay of leaves, wood, and other vegetable matter; and b) fulvic acid, which is a water soluble substance of low molecular weight that is derived from humus”. Source: https://water.epa.gov/drink/contaminant
St Lawrence (Queensland) – Aluminium
According to the ADWG, no health guideline has been adopted for Aluminium, but that the issue is still open to review. Aluminium can come from natural geological sources or from the use of aluminium salts as coagulants in water treatment plants. According to the ADWG “A well-operated water filtration plant (even using aluminium as a flocculant) can achieve aluminium concentrations in the finished water of less than 0.1 mg/L.
The most common form of aluminium in water treatment plants is Aluminium Sulfate (Alum). Alum can be supplied as a bulk liquid or in granular form. It is used at water treatment plants as a coagulant to remove turbidity, microorganisms, organic matter and inorganic chemicals. If water is particularly dirty an Alum dose of as high as 500mg/L could occur. There is also concern that other metals may also exist in refined alum.
While the ADWG mentions that there is considerable evidence that Aluminium is neurotoxic and can pass the gut barrier to accumulate in the blood, leading to a condition called encephalopathy (dialysis dementia) and that Aluminium has been associated with Parkinsonism dementia and amyotrophic lateral sclerosis, the NHMRC, whilst also acknowledging studies which have linked Aluminium with Alzheimer disease, has not granted Aluminium a NOEL (No Observable Effect Level) due to insufficient and contradictory data. Without a NOEL, a health guideline cannot be established. The NHMRC has also stated that if new information comes to hand, a health guideline may be established in the future.
In communication with Aluminium expert Dr Chris Exley (Professor in Bioinorganic Chemistry
The Birchall Centre, Lennard-Jones Laboratories, Keele University, Staffordshire UK) in March 2013 regarding high levels of Aluminium detected in the South Western Victorian town of Hamilton
“It is my opinion that any value above 0.5 mg/L is totally unacceptable and a potential health risk. Where such values are maintained over days, weeks or even months, as indeed is indicated by the data you sent to me, these represent a significant health risk to all consumers. While consumers may not experience any short term health effects the result of longer term exposure to elevated levels of aluminium in potable waters may be a significant increase in the body burden of aluminium in these individuals. This artificially increased body burden will not return to ‘normal’ levels when the Al content of the potable water returns to normal but will act as a new platform level from which the Al body burden will continue to increase with age.
St Lawrence (Queensland) – Dissolved Oxygen
2016/17: St Lawrence (Queensland) Dissolved Oxygen 102.4% (max), av. 90.06%. 1 exceedence during year.
Based on aesthetic considerations, it is desirable that the dissolved oxygen concentration in drinking water be greater than 85% saturation.
No health-based guideline value has been set for dissolved oxygen.
GENERAL DESCRIPTION
Drinking water will generally contain an adequate concentration of dissolved oxygen; however, under some circumstances the oxygen concentration may be reduced. This may occur, for instance, where water has been drawn from deep storages, where there is considerable growth of microorganisms in a distribution system, or following prolonged periods of high water temperature.
Low oxygen concentrations or anoxic conditions enable nuisance anaerobic microorganisms to grow, producing by-products that affect the aesthetic quality of the water and increase corrosion of pipes and fittings.
There are a number of such nuisance microorganisms. Manganese-reducing bacteria produce black manganese deposits which can slough off pipes and soil laundry. Sulfate-reducing bacteria can produce hydrogen sulfide, giving drinking water a ‘rotten egg’ smell. Nitrate-reducing bacteria can produce nitrite. Iron-reducing bacteria can increase the concentration of ferrous ion in solution which will lead to the deposition of insoluble ferric salts when aeration is increased.
Localised pH changes associated with the growth of nuisance microorganisms can cause rapid corrosion in metal pipes.
Water from groundwater sources will generally have low oxygen concentrations and while this may cause no difficulties for most supplies, some supplies may need aeration to improve water quality (e.g. taste and odour). ADWG 2011
St Lawrence (Queensland) – Hydrogen Sulfide
2016/17 – St Lawrence (Queensland) – 1mg/L 1 exceedence during year
Based on aesthetic considerations, the concentration of hydrogen sulfide in drinking water should not exceed 0.05 mg/L.
No health-based guideline value has been set for hydrogen sulfide, or sulfide, as the aesthetic guideline is considerably below the concentration that would cause health problems.
GENERAL DESCRIPTION
Hydrogen sulfide is formed in drinking water by the hydrolysis of soluble sulfides, or through the reduction of sulfate by the action of microorganisms. Both processes require anoxic conditions. In well-oxygenated water, sulfide will be chemically or biologically oxidised to sulfate or elemental sulfur, and concentrations are extremely low. Higher concentrations can occur in anoxic water drawn from deep storages.
In water, hydrogen sulfide will be in equilibrium with the sulfide and hydrosulfide ions. The ratio will depend on pH, temperature and salinity. At pH 7.4, about a third will be present in undissociated form, with the remainder present as hydrosulfide. Above pH 10, the sulfide ion will be the dominant form; below pH 5, undissociated hydrogen sulfide will predominate.
Hydrogen sulfide has an obnoxious ‘rotten egg’ gas odour, with a taste and odour threshold of 0.05 mg/L. High concentrations in air can have a deceptively sweet smell and cause ‘olfactory fatigue’ (a deadening of the sense of smell).
Hydrogen sulfide is used industrially in the production of sulfur, sulfuric acid, inorganic sulfides, thiophenes and other organic compounds. It occurs as a by-product in a number of processes including petrol refining, coke ovens, paper mills, iron smelters, food processing and tanneries. It is present in sewers and is a major component of sewage odour.
Data on the concentration of hydrogen sulfide in food are scarce, although a number of foods and drinks are known to contain sulfides.
St Lawrence (Queensland) – Manganese
2015/16: St Lawrence (Queensland) – Manganese 0.5mg/L (maximum)
21/12/21: St Lawrence (Queensland) – Manganese 0.833mg/L
20/4/22: St Lawrence (Queensland) – Manganese 0.572mg/L
3 ADWG exceedences.
Manganese: ADWG Guidelines 0.5mg/L. ADWG Aesthetic Guideline 0.1mg/L
Manganese is found in the natural environment. Manganese in drinking water above 0.1mg/L can give water an unpleasant taste and stain plumbing fixtures and laundry.
St Lawrence (Queensland) Turbidity
26/6/22: St Lawrence (Queensland) – Turbidity 83.9 NTU network
Chlorine-resistant pathogen reduction: Where filtration alone is used as the water treatment process to address identified risks from Cryptosporidium and Giardia, it is essential that filtration is optimised and consequently the target for the turbidity of water leaving individual filters should be less than 0.2 NTU, and should not exceed 0.5 NTU at any time
Disinfection: A turbidity of less than 1 NTU is desirable at the time of disinfection with chlorine unless a higher value can be validated in a specific context.
Aesthetic: Based on aesthetic considerations, the turbidity should not exceed 5 NTU at the consumer’s tap.
2022/23 – St Lawrence (Queensland) – Chlorine
2022/23: St Lawrence (Queensland). Chlorine 4.9mg/L (max), 2.4mg/L (mean)
GENERAL DESCRIPTION
Chlorine dissociates in water to form free chlorine, which consists of aqueous molecular chlorine, hypochlorous acid and hypochlorite ion. Chlorine and hypochlorites are toxic to microorganisms and are used extensively as disinfectants for drinking water supplies. Chlorine is also used to disinfect sewage and wastewater, swimming pool water, in-plant supplies, and industrial cooling water.
Chlorine has an odour threshold in drinking water of about 0.6 mg/L, but some people are particularly sensitive and can detect amounts as low as 0.2 mg/L. Water authorities may need to exceed the odour threshold value of 0.6 mg/L in order to maintain an effective disinfectant residual.
In the food industry, chlorine and hypochlorites are used for general sanitation and for odour control. Large amounts of chlorine are used in the production of industrial and domestic disinfectants and bleaches, and it is used in the synthesis of a large range of chemical compounds.
Free chlorine reacts with ammonia and certain nitrogen compounds to form combined chlorine. With ammonia, chlorine forms chloramines (monochloramine, dichloramine and nitrogen trichloride or trichloramine) (APHA 2012). Chloramines are used for disinfection but are weaker oxidising agents than free chlorine.
Free chlorine and combined chlorine may be present simultaneously (APHA 2012). The term totalchlorine refers to the sum of free chlorine and combined chlorine present in a sample.
Chlorine (Free) ADWG Guideline: 5mg/L (Chlorine in chloraminated supplies 4.1mg/L). Chlorine dissociates in water to form free chlorine, which consists of aqueous molecular chlorine, hypochlorous acid and hypochlorite ion.
Chlorine (Total) ADWG Guideline 5mg/L (chloraminated supplies 4.1mg/L): The term total chlorine refers to the sum of free chlorine and combined chlorine present in a sample