2005/17 – Tarnagulla (Victoria) – E.coli, Trihalomethanes, Hardness, Total Dissolved Solids, Chloride, Iron, Sodium

Center map
Get Directions

Tarnagulla (Victoria) – E.coli

2007/8 Tarnagulla E.coli 1orgs/100ml 98.1% samples no e.coli (1 positive)

2012/13 Tarnagulla E.coli  3/100mL (96.4% samples no e.coli ) (2 positive)

2014/15 Tarnagulla E.coli  1/100mL (98.1% samples no e.coli ) (1 positive)


Thermotolerant coliforms are a sub-group of coliforms that are able to grow at 44.5 ± 0.2°C. E. coli is the most common thermotolerant coliform present in faeces and is regarded as the most specific indicator of recent faecal contamination because generally it is not capable of growth in the environment. In contrast, some other thermotolerant coliforms (including strains of Klebsiella, Citrobacter and Enterobacter) are able to grow in the environment and their presence is not necessarily related to faecal contamination. While tests for thermotolerant coliforms can be simpler than for E. coli, E. coli is considered a superior indicator for detecting faecal contamination…” ADWG

Tarnagulla (Victoria) – Trihalomethanes

17/3/16 Tarnagulla THM  0.26mg/L

18/4/16 Tarnagulla THM  0.27mg/L

6/6/16 Tarnagulla THM  0.31mg/L

Trihalomethanes Australian Guideline Level 250μg/L (0.25mg/L)

The raw water at Katamatite is sourced from the Murray Valley Channel irrigation system which is managed by Goulburn Murray Water. Normal operation of this channel system involves the

shutdown over the winter period with no water available, GVW is required to fill the storages prior to the shutdown of the irrigation system and is reliant upon storage until irrigation water becomes available. At the time of the exceedance the raw water levels in the onsite storages were low due to this shutdown period and sourcing water over winter from the storage. The low raw water storage levels resulted in a higher concentration of dissolved organic matter within the storage, which increased the chlorine demand. Shortly after the exceedance GVW were able to access water in the irrigations system, improving the water quality and reducing the levels of organic matter present. All subsequent resamples were below the health limit.”

Tarnagulla – Victoria – Hardness (maximum)

2005/06: Tarnagulla (Victoria) – Hardness 400mg/L

2006/07: Tarnagulla (Victoria) – Hardness 490mg/L

2007/8 Tarnagulla Hardness 610mg/L

2008/9 Tarnagulla Hardness 490mg/L

2009/10 Tarnagulla Hardness 620mg/L

2010/11 Tarnagulla Hardness 220mg/L

2014/15 Tarnagulla Hardness 530mg/L

2015/16 Tarnagulla Hardness 230mg/L

2016/17: Tarnagulla (Victoria) – Calcium Carbonate 250mg/L


“To minimise undesirable build‑up of scale in hot water systems, total hardness (as calcium
carbonate) in drinking water should not exceed 200 mg/L.

Hard water requires more soap than soft water to obtain a lather. It can also cause scale to form on hot water pipes and fittings. Hardness is caused primarily by the presence of calcium and magnesium ions, although other cations such as strontium, iron, manganese and barium can also contribute.”

Australian Drinking Water Guidelines 2011

Tarnagulla – Victoria – Total Dissolved Solids (maximum levels)

2005/06: Tarnagulla (Victoria) – Total Dissolved Solids 1700 μS/cm

2006/07: Tarnagulla (Victoria) – Total Dissolved Solids 2400 μS/cm

2007/8 Tarnagulla Total Dissolved Solids 1400mg/L

2008/9 Tarnagulla Total Dissolved Solids 2400mg/L

2009/10 Tarnagulla Total Dissolved Solids 3100mg/L

2010/11 Tarnagulla Total Dissolved Solids 1600mg/L

2011/12 Tarnagulla Total Dissolved Solis 1300mg/L

2016/17: Tarnagulla (Victoria) – Total Dissolved Solids 1300 μS/cm


“No specific health guideline value is provided for total dissolved solids (TDS), as there are no
health effects directly attributable to TDS. However for good palatability total dissolved solids
in drinking water should not exceed 600 mg/L.

Total dissolved solids (TDS) consist of inorganic salts and small amounts of organic matter that are dissolved in water. Clay particles, colloidal iron and manganese oxides and silica, fine enough to pass through a 0.45 micron filter membrane can also contribute to total dissolved solids.

Total dissolved solids comprise: sodium, potassium, calcium, magnesium, chloride, sulfate, bicarbonate, carbonate, silica, organic matter, fluoride, iron, manganese, nitrate, nitrite and phosphates…” Australian Drinking Water Guidelines 2011

Tarnagulla (Victoria) – Chloride

2007/8 Tarnagulla Chloride 600mg/L

2008/9 Tarnagulla Chloride 570mg/L

2009/10 Tarnagulla Chloride 570mg/L

2010/11 Tarnagulla Chloride 260mg/L

2016/17: Tarnagulla (Victoria)  Chloride 300mg/L

“Chloride is present in natural waters from the dissolution of salt deposits, and contamination from effluent disposal. Sodium chloride is widely used in the production of industrial chemicals such as caustic soda, chlorine, and sodium chlorite and hypochlorite. Potassium chloride is used in the production of fertilisers.

The taste threshold of chloride in water is dependent on the associated cation but is in the range 200–300 mg/L. The chloride content of water can affect corrosion of pipes and fittings. It can also affect the solubility of metal ions.

In surface water, the concentration of chloride is usually less than 100 mg/L and frequently below 10 mg/L. Groundwater can have higher concentrations, particularly if there is salt water intrusion.

Based on aesthetic considerations, the chloride concentration in drinking water should not exceed 250 mg/L.

No health-based guideline value is proposed for chloride.” 2011 Australian Drinking Water Guidelines

Tarnagulla –  Victoria – Iron

2007/8 Tarnagulla Iron 0.51mg/L

2008/9 Tarnagulla Iron 0.37mg/L

Based on aesthetic considerations (precipitation of iron from solution and taste),
the concentration of iron in drinking water should not exceed 0.3 mg/L.
No health-based guideline value has been set for iron.

Iron has a taste threshold of about 0.3 mg/L in water, and becomes objectionable above 3 mg/L. High iron concentrations give water an undesirable rust-brown appearance and can cause staining of laundry and plumbing fittings, fouling of ion-exchange softeners, and blockages in irrigation systems. Growths of iron bacteria, which concentrate iron, may cause taste and odour problems and lead to pipe restrictions, blockages and corrosion. ADWG 2011

Tarnagulla (Victoria) – Sodium

2007/8 Tarnagulla Sodium 270mg/L

2008/9 Tarnagulla Sodium 240mg/L

2009/10 Tarnagulla Sodium 290mg/L

“Based on aesthetic considerations (taste), the concentration of sodium in drinking water
should not exceed 180 mg/L….The sodium ion is widespread in water due to the high solubility of sodium salts and the abundance of mineral deposits. Near coastal areas, windborne sea spray can make an important contribution either by fallout onto land surfaces where it can drain to drinking water sources, or from washout by rain. Apart from saline intrusion and natural contamination, water treatment chemicals, domestic water softeners and
sewage effluent can contribute to the sodium content of drinking water.” ADWG 2011