2008/21: Talbot (Victoria) – NDMA, Trihalomethanes, E.coli, Total Dissolved Solids, Hardness, Iron, pH

Talbot (Victoria) NDMA

1/9/16 Talbot NDMA 450ng/L (Australian Record)

“Based on health considerations, the concentration of NDMA in drinking water should not
exceed 0.0001 mg/L (100 ng/L). Action to reduce NDMA is encouraged, but must not compromise disinfection, as non disinfected water poses significantly greater risk than NDMA.

NDMA is used as an industrial solvent, an anti-oxidant, a rubber accelerator, and in the preparation of polymers, where it may be used as an initiator or a plasticiser. The compound has been used in the production of rocket fuel, as a biocide for nematodes, and an intermediate for 1,1-dimethylhydrazine to inhibit nitrification of soils.

NDMA is formed under mildly acidic conditions by the reaction of natural and synthetic secondary, tertiary or quaternary amines with nitrate and nitrite. Precursor amines include alkylamines, dimethylamine (DMA), tetramethylthiuram disulfide (thiram) and polyelectrolytes used in water and wastewater treatment. NDMA is also produced as a by-product of chloramination of drinking water (due to the presence of dimethylamine in source waters subject to wastewater discharges or the oxidation of natural organic matter by chlorine in the presence of ammonia) and to a lesser extent by chlorination. NDMA formation can be facilitated in soils by biochemical pathways in micro-organisms, and this compound is resistant to microbial degradation under both aerobic and anaerobic conditions. Ozonation of drinking water contaminated with the fungicide tolyfluamide can also lead to the formation of NDMA…

TYPICAL VALUES IN AUSTRALIAN DRINKING WATER
There are no data in the public domain or peer reviewed literature on NDMA in Australian drinking water distribution systems and water treatment plants. Anecdotal evidence suggests a bi-modal distribution, with several water authorities indicating that NDMA is present at levels at or near the limit of determination of 1 to 2 ng/L, whereas preliminary sampling and analysis by other authorities indicates levels in the range of 60-90 ng/L. A recent report from South Australia has indicated that NDMA may originate from rubber components of newly commissioned drinking water pipelines, regardless of the disinfectant used. This
may account at least partly for the divergent results reported by different water suppliers…” ADWG 2011

Talbot (Victoria) – Trihalomethanes

11th October 2012 (6 Days) Time period from date of detection to the time chloramine was re-instated Talbot Customer Tap (Maryborough System) Trihalomethanes (THMs) – 0.26 mg/L Talbot Reticulation

2014/15: Talbot Trihalomethanes 310ug/L

“A single elevated THM result occurred in each locality due to the planned temporary change of the Maryborough system from chloramination to chlorination (over the period 16 June 2014 – 29 September 2014) to maintain effective disinfection during storage tank upgrade works. The system subsequently returned to the usual operating mode using chloramination at the
conclusion of the works, with compliant THM results thereafter.” Central Highlands Water 2014/15

Trihalomethanes Australian Guideline Level 250μg/L

Why and how are THMs formed?
“When chlorine is added to water with organic material, such as algae, river weeds, and decaying leaves, THMs are formed. Residual chlorine molecules react with this harmless organic material to form a group of chlorinated chemical compounds, THMs. They are tasteless and odourless, but harmful and potentially toxic. The quantity of by-products formed is determined by several factors, such as the amount and type of organic material present in water, temperature, pH, chlorine dosage, contact time available for chlorine, and bromide concentration in the water. The organic matter in water mainly consists of a) humic substance, which is the organic portion of soil that remains after prolonged microbial decomposition formed by the decay of leaves, wood, and other vegetable matter; and b) fulvic acid, which is a water soluble substance of low molecular weight that is derived from humus”. US EPA

Talbot (Victoria): E.coli
3 February 2009 – Talbot Break Pressure Tank. (Maryborough System). E. coli – 1 orgs / 100 mL. Tank dosed with chlorine and resampled. No E. coli detected in resample. Informed DHS of initial and resample results.(Central Highlands Water Annual Drinking Water Quality Report 2008-9)

“Coliforms are Gram-negative, non-spore-forming, rod-shaped bacteria that are capable of aerobic and facultative anaerobic growth in the presence of bile salts or other surface active agents with similar growth-inhibiting properties. They are found in large numbers in the faeces of humans and other warm-blooded animals, but many species also occur in the environment.

Thermotolerant coliforms are a sub-group of coliforms that are able to grow at 44.5 ± 0.2°C. E. coli is the most common thermotolerant coliform present in faeces and is regarded as the most specific indicator of recent faecal contamination because generally it is not capable of growth in the environment. In contrast, some other thermotolerant coliforms (including strains of Klebsiella, Citrobacter and Enterobacter) are able to grow in the environment and their presence is not necessarily related to faecal contamination. While tests for thermotolerant coliforms can be simpler than for E. coli, E. coli is considered a superior indicator for detecting faecal contamination…” ADWG 2011

Talbot – Victoria – Total Dissolved Solids

2008/9: Talbot (Victoria) – Total Dissolved Solids 1550 mg/L

2009/10: Talbot (Victoria) – Total Dissolved Solids 850 mg/L

2010/11: Talbot (Victoria) – Total Dissolved Solids 950 mg/L

2015/16: Talbot Total Dissolved Solids 700mg/L

2016/17: Talbot Total Dissolved Solids 700mg/L

GUIDELINE

“No specific health guideline value is provided for total dissolved solids (TDS), as there are no
health effects directly attributable to TDS. However for good palatability total dissolved solids
in drinking water should not exceed 600 mg/L.

Total dissolved solids (TDS) consist of inorganic salts and small amounts of organic matter that are dissolved in water. Clay particles, colloidal iron and manganese oxides and silica, fine enough to pass through a 0.45 micron filter membrane can also contribute to total dissolved solids.

Total dissolved solids comprise: sodium, potassium, calcium, magnesium, chloride, sulfate, bicarbonate, carbonate, silica, organic matter, fluoride, iron, manganese, nitrate, nitrite and phosphates…” Australian Drinking Water Guidelines 2011

Talbot – Victoria – Hardness

2008/09: Talbot (Victoria) – Hardness 790mg/L

2009/10: Talbot (Victoria) – Hardness 370mg/L

2010/11: Talbot (Victoria) – Hardness 360mg/L

2013/14: Talbot Hardness 220mg/L

2014/15: Talbot Hardness 280mg/L

2015/16 Talbot Hardness 390mg/L

2016/17: Talbot Hardness 380mg/L

2018/19: Talbot Hardness 220mg/L

GUIDELINE

“To minimise undesirable build‑up of scale in hot water systems, total hardness (as calcium
carbonate) in drinking water should not exceed 200 mg/L.

Hard water requires more soap than soft water to obtain a lather. It can also cause scale to form on hot water pipes and fittings. Hardness is caused primarily by the presence of calcium and magnesium ions, although other cations such as strontium, iron, manganese and barium can also contribute.”

Australian Drinking Water Guidelines 2011

Talbot –  Victoria – Iron

2008/09: Talbot (Victoria)  – Iron 0.39mg/L (Highest level only)

Based on aesthetic considerations (precipitation of iron from solution and taste),
the concentration of iron in drinking water should not exceed 0.3 mg/L.
No health-based guideline value has been set for iron.

Iron has a taste threshold of about 0.3 mg/L in water, and becomes objectionable above 3 mg/L. High iron concentrations give water an undesirable rust-brown appearance and can cause staining of laundry and plumbing fittings, fouling of ion-exchange softeners, and blockages in irrigation systems. Growths of iron bacteria, which concentrate iron, may cause taste and odour problems and lead to pipe restrictions, blockages and corrosion. ADWG 2011

Talbot (Victoria) – pH (alkaline)

Average pH: 2017-18: 8.8 pH units

Average pH: 2018-19: 8.7 pH units

Average pH: 2020-21: 8.7 pH units

Based on the need to reduce corrosion and encrustation in pipes and fittings, the pH of
drinking water should be between 6.5 and 8.5.

New concrete tanks and cement-mortar lined pipes can significantly increase pH and
a value up to 9.2 may be tolerated, provided monitoring indicates no deterioration in
microbiological quality.

pH is a measure of the hydrogen ion concentration of water. It is measured on a logarithmic scale from 0 to 14. A pH of 7 is neutral, greater than 7 is alkaline, and less than 7 is acidic.

One of the major objectives in controlling pH is to minimise corrosion and encrustation in pipes and fittings. Corrosion can be reduced by the formation of a protective layer of calcium carbonate on the inside of the pipe or fitting, and the formation of this layer is affected by pH, temperature, the availability of calcium (hardness) and carbon dioxide. If the water is too alkaline (above pH 8.5), the rapid deposition and build-up of calcium carbonate that can result may eventually block the pipe.