Yolla (Dowlings Creek) Tasmania – E.coli
February 23 2016: Yolla (Tasmania) Dowlings Creek – E.coli 2 MPN100/mL
2/12/19: Yolla (Tasmania) – E.coli 2 MPN100/mL
Escherichia coli should not be detected in any 100 mL sample of drinking water. If detected
in drinking water, immediate action should be taken including investigation of potential
sources of faecal contamination.
“Coliforms are Gram-negative, non-spore-forming, rod-shaped bacteria that are capable of aerobic and facultative anaerobic growth in the presence of bile salts or other surface active agents with similar growth-inhibiting properties. They are found in large numbers in the faeces of humans and other warm-blooded animals, but many species also occur in the environment.
Thermotolerant coliforms are a sub-group of coliforms that are able to grow at 44.5 ± 0.2°C. E. coli is the most common thermotolerant coliform present in faeces and is regarded as the most specific indicator of recent faecal contamination because generally it is not capable of growth in the environment. In contrast, some other thermotolerant coliforms (including strains of Klebsiella, Citrobacter and Enterobacter) are able to grow in the environment and their presence is not necessarily related to faecal contamination. While tests for thermotolerant coliforms can be simpler than for E. coli, E. coli is considered a superior indicator for detecting faecal contamination…” ADWG 2011
Yolla (Tasmania) – Lead
February 9 2016: Yolla (Tasmania) – Lead 0.0205mg/L
Based on health considerations, the concentration of lead in drinking water should not
exceed 0.01 mg/L.
“… Lead can be present in drinking water as a result of dissolution from natural sources, or from household plumbing systems containing lead. These may include lead in pipes, or in solder used to seal joints. The amount of lead dissolved will depend on a number of factors including pH, water hardness and the standing time of the water.
Lead is the most common of the heavy metals and is mined widely throughout the world. It is used in the production of lead acid batteries, solder, alloys, cable sheathing, paint pigments, rust inhibitors, ammunition, glazes and plastic stabilisers. The organo-lead compounds tetramethyl and tetraethyl lead are used extensively as anti-knock and lubricating compounds in gasoline…
Lead can be absorbed by the body through inhalation, ingestion or placental transfer. In adults,
approximately 10% of ingested lead is absorbed but in children this figure can be 4 to 5 times higher. After absorption, the lead is distributed in soft tissue such as the kidney, liver, and bone marrow where it has a biological half-life in adults of less than 40 days, and in skeletal bone where it can persist for 20 to 30 years.
In humans, lead is a cumulative poison that can severely affect the central nervous system. Infants, fetuses and pregnant women are most susceptible. Placental transfer of lead occurs in humans as early as the 12th week of gestation and continues throughout development.
Many epidemiological studies have been carried out on the effects of lead exposure on the intellectual development of children. Although there are some conflicting results, on balance the studies demonstrate that exposure to lead can adversely affect intelligence.
These results are supported by experiments using young primates, where exposure to lead causes significant behavioural and learning difficulties of the same type as those observed in children.
Other adverse effects associated with exposure to high amounts of lead include kidney damage, interference with the production of red blood cells, and interference with the metabolism of calcium needed for bone formation…” ADWG 2011
Yolla (Tasmania) – HAA’s
8/7/19: Yolla (Tasmania) Total Haloacetic Acid (HAA7) 136ug/L
9/1/20: Yolla (Tasmania) Total Haloacetic Acid (HAA7) 110ug/L
10/7/20: Yolla (Tasmania) Total Haloacetic Acid (HAA7) 99ug/L
9/10/20: Yolla (Tasmania) Total Haloacetic Acid (HAA7) 118ug/L
Australian Guidelines Trichloroacetic Acid 0.100mg/L, Dichloroacetic Acid 0.100mg/L
“Chloroacetic acids are produced in drinking water as by-products of the reaction between chlorine and naturally occurring humic and fulvic acids. Concentrations reported overseas range up to 0.16mg/L and are typically about half the chloroform concentration. The chloroacetic acids are used commercially as reagents or intermediates in the preparation of a wide variety of chemicals. Monochloroacetic acid can be used as a pre-emergent herbicide, dichloroacetic acid as an ingredient in some pharmaceutical products, and trichloroacetic acid as a herbicide, soil sterilant and antiseptic.” Australian Drinking Water Guidelines – National Health and Medical Research Council…
Yolla (Tasmania) – Colour
January 19 2016: Yolla (Tasmania) – Colour Apparent 18 PCU
Based on aesthetic considerations, true colour in drinking water should not exceed 15 HU.
“… Colour is generally related to organic content, and while colour derived from natural sources such as humic and fulvic acids is not a health consideration, chlorination of such water can produce a variety of chlorinated organic compounds as by-products (see Section 6.3.2 on disinfection by-products). If the colour is high at the time of disinfection, then the water should be checked for disinfection by-products. It should be noted, however, that low colour at the time of disinfection does not necessarily mean that the concentration of disinfection by-products will be low…
Yolla (Tasmania) – Cobalt
10/7/24: Yolla (Tasmania) Cobalt (dissolved total) 0.0002mg/L
There is no guideline for Cobalt and compounds in the Australian Drinking Water Guidelines
Yolla (Tasmania) – Chloroketones
10/7/24: Yolla (Tasmania): 1,1,1-trichloropropanone 4.2ug/L, 1,3 Dichloropropane 1.2ug/L
Data are inadequate to set guideline values for chloroketones in drinking water. GENERAL DESCRIPTION The chloroketones are produced in drinking water as by-products of the reaction between naturally occurring organic matter and chlorine. No data are available on other sources or uses for these compounds. Concentrations of chloroketones in drinking water reported overseas are very low and are estimated at less than 0.01 mg/L.
TYPICAL VALUES IN AUSTRALIAN DRINKING WATER In major Australian reticulated supplies 1,1,1-trichloropropanone has been recorded in concentrations up to 0.02 mg/L, but it is usually below the limit of determination of 0.0005 mg/L. No data are available for other chloroketones.
LIMITING FORMATION IN DRINKING WATER The presence of chloroketones in drinking water can be minimised by removing naturally occurring organic matter from the source water, by reducing the amount of chlorine added, or by the use of alternative disinfectants.” 2011 ADWG
Yolla (Tasmania) – Haloacetonitriles
10/7/24: Yolla (Tasmania) – Bromochloroacetonitrile 2.1ug/L, Dichloroacetonitrile 5.3ug/L
“GUIDELINE
Data are inadequate to set guideline values for haloacetonitriles in drinking water
GENERAL DESCRIPTION
Haloacetonitriles are formed from organic precursors during chlorination or chloramination of drinking water. Concentrations of dihaloacetonitriles reported overseas range up to 0.04 mg/L but are typically less than 0.003 mg/L. Concentrations of trichloroacetonitrile are less than 0.001 mg/L.
Trichloroacetonitrile has been used as an insecticide. No data are available on uses for the other haloacetonitriles.
TYPICAL VALUES IN AUSTRALIAN DRINKING WATER
No data are available on concentrations of haloacetonitriles in Australian drinking waters”. ADWG 2011