2007/22 – Lajamanu (Northern Territory) – Hardness, Total Dissolved Solids, Iodine, Silica

Lajamanu – Northern Territory – Hardness

2007/08: Lajamanu Hardness 280mg/L

2008/09: Lajamanu Hardness 315mg/L

2009/10: Lajamanu Hardness 266mg/L

2010/11: Lajamanu Hardness 288mg/L

2013/14: Lajamanu Hardness 283mg/L

2015/16: Lajamanu Hardness 264mg/L

2016/17: Lajamanu Hardness 208mg/L

2021/22: Lajamanu Hardness 200mg/L (av.)

GUIDELINE

“To minimise undesirable build‑up of scale in hot water systems, total hardness (as calcium
carbonate) in drinking water should not exceed 200 mg/L.

Hard water requires more soap than soft water to obtain a lather. It can also cause scale to form on hot water pipes and fittings. Hardness is caused primarily by the presence of calcium and magnesium ions, although other cations such as strontium, iron, manganese and barium can also contribute.”

Australian Drinking Water Guidelines 2011

Lajamanu – Northern Territory – Total Dissolved Solids

2010/11: Lajamanu Total Dissolved Solids 630mg/L

GUIDELINE

“No specific health guideline value is provided for total dissolved solids (TDS), as there are no
health effects directly attributable to TDS. However for good palatability total dissolved solids
in drinking water should not exceed 600 mg/L.

Total dissolved solids (TDS) consist of inorganic salts and small amounts of organic matter that are dissolved in water. Clay particles, colloidal iron and manganese oxides and silica, fine enough to pass through a 0.45 micron filter membrane can also contribute to total dissolved solids.

Total dissolved solids comprise: sodium, potassium, calcium, magnesium, chloride, sulfate, bicarbonate, carbonate, silica, organic matter, fluoride, iron, manganese, nitrate, nitrite and phosphates…” Australian Drinking Water Guidelines 2011

Lajamanu – (Northern Territory) – Iodine

2008/09: Lajamanu Iodine 0.19mg/L

2009/10: Lajamanu Iodine 0.18mg/L

2010/11: Lajamanu Iodine 0.17mg/L

2013/14: Lajamanu: Iodine 0.15mg/L

GUIDELINE
Iodide: Based on health considerations, the concentration of iodide in drinking water should
not exceed 0.5 mg/L.
Iodine: No guideline value has been set for molecular iodine.
GENERAL DESCRIPTION
The element iodine is present naturally in seawater, nitrate minerals and seaweed, mostly in the form of iodide salts. It may be present in water due to leaching from salt and mineral deposits. Iodide can be oxidised to molecular iodine with strong disinfectants such as chlorine.
Molecular iodine solutions are used as antiseptics and as sanitising agents in hospitals and laboratories.
Iodine is occasionally used for the emergency disinfection of water for field use but is not used for disinfecting larger drinking water supplies. Iodide is used in pharmaceutical and photographic materials. Iodine has a taste threshold in water of about 0.15 mg/L.
Iodide occurs in cows’ milk and seafood. Some countries add iodide to table salt to compensate for iodide-deficient diets.

Lajamanu (Northern Territory) – Silica

2016/17: Lajamanu (Northern Territory). Silica 94mg/L

2021/22: Lajamanu (Northern Territory). Silica 100mg/L

To minimise an undesirable scale build up on surfaces, silica (SiO2) within drinking waters should not exceed 80 mg/L.
GENERAL DESCRIPTION
Silica present in water is usually referred to as amorphous silica (i.e. lacking any crystalline structure). When silica is dissolved within water it forms monosilicic acid:
SiO2 + 2H2O à Si(OH)4
When the concentrations of monosilicic acid increase, polymerisation of the silica occurs, forming polysilicic acids followed by formation of colloidal silica. Monosilicic acid and polysilicic acids are the forms of silica analysed when determining dissolved silica content.
The deposition of silica from solutions can occur via various mechanisms. The deposition of silica that can cause the most problems for the water industry is via silica’s ability to deposit on solid surfaces that have hydroxyl (OH) groups present. Surfaces that commonly have hydroxyl groups present are glass and metallic surfaces. For example, dissolved silica will react with the surfaces of glass and begin to form a white precipitate. The silica forms silicates on the surface, resulting in silica build-up. In cases where customer complaints occur due to scale build-up, water hardness and silica concentrations should be investigated to determine the cause.
Silica can be a problem in water treatment due to its ability to cause fouling of reverse osmosis (RO) membranes (Sheikholeslami and Tan, 1999, Ning 2002, Sahachaiyunta and Sheikholeslami 2002). This occurs when the dissolved silica of the concentrate becomes super-saturated, causing silicates to form in the presence of metals, and these deposit on the membrane surface. The silicate then dehydrates, forming hard layers on the membrane that reduce the effectiveness of the process… 2011 ADWG