2012/19 – Kalka (South Australia) – Hardness
2012/16: Kalka (South Australia) – Hardness average 338.8mg/L (5 detections out of 5 above guideline)
27/8/19: Kalka (South Australia) Hardness 327mg/L
GUIDELINE
“To minimise undesirable build‑up of scale in hot water systems, total hardness (as calcium
carbonate) in drinking water should not exceed 200 mg/L.
Hard water requires more soap than soft water to obtain a lather. It can also cause scale to form on hot water pipes and fittings. Hardness is caused primarily by the presence of calcium and magnesium ions, although other cations such as strontium, iron, manganese and barium can also contribute.”
Australian Drinking Water Guidelines 2011
Kalka (South Australia) – E.coli
The 1997 water quality investigation detected Total Coliform counts in one of the bores and
E. coli in part of the reticulation system (Fitzgerald et al., 2000). The condition of
the casing is fairly good in all three wells, although KA-1 and KA-2 could benefit
from some slot cleaning (Dodds and Sampson, 2000).
Escherichia coli should not be detected in any 100 mL sample of drinking water. If detected
in drinking water, immediate action should be taken including investigation of potential
sources of faecal contamination.
“Coliforms are Gram-negative, non-spore-forming, rod-shaped bacteria that are capable of aerobic and facultative anaerobic growth in the presence of bile salts or other surface active agents with similar growth-inhibiting properties. They are found in large numbers in the faeces of humans and other warm-blooded animals, but many species also occur in the environment.
Thermotolerant coliforms are a sub-group of coliforms that are able to grow at 44.5 ± 0.2°C. E. coli is the most common thermotolerant coliform present in faeces and is regarded as the most specific indicator of recent faecal contamination because generally it is not capable of growth in the environment. In contrast, some other thermotolerant coliforms (including strains of Klebsiella, Citrobacter and Enterobacter) are able to grow in the environment and their presence is not necessarily related to faecal contamination. While tests for thermotolerant coliforms can be simpler than for E. coli, E. coli is considered a superior indicator for detecting faecal contamination…” ADWG 2011
Kalka (South Australia) – E.coli
The 1997 water quality investigation detected Total Coliform counts in one of the bores and
E. coli in part of the reticulation system (Fitzgerald et al., 2000). The condition of
the casing is fairly good in all three wells, although KA-1 and KA-2 could benefit
from some slot cleaning (Dodds and Sampson, 2000).
Escherichia coli should not be detected in any 100 mL sample of drinking water. If detected
in drinking water, immediate action should be taken including investigation of potential
sources of faecal contamination.
“Coliforms are Gram-negative, non-spore-forming, rod-shaped bacteria that are capable of aerobic and facultative anaerobic growth in the presence of bile salts or other surface active agents with similar growth-inhibiting properties. They are found in large numbers in the faeces of humans and other warm-blooded animals, but many species also occur in the environment.
Thermotolerant coliforms are a sub-group of coliforms that are able to grow at 44.5 ± 0.2°C. E. coli is the most common thermotolerant coliform present in faeces and is regarded as the most specific indicator of recent faecal contamination because generally it is not capable of growth in the environment. In contrast, some other thermotolerant coliforms (including strains of Klebsiella, Citrobacter and Enterobacter) are able to grow in the environment and their presence is not necessarily related to faecal contamination. While tests for thermotolerant coliforms can be simpler than for E. coli, E. coli is considered a superior indicator for detecting faecal contamination…” ADWG 2011
Kalka (South Australia) – Selenium
21/2/23: Kalka Selenium 0.0032mg/L
Based on health considerations, the concentration of selenium in drinking water should not exceed 0.004 mg/L (2011-2025 guideline 0.01mg/L). “General description Selenium (Se) and selenium salts are widespread in the environment. Selenium is released from natural and human-made sources (such as the burning of coal). Selenium is also a by-product of the processing of sulfide ores, chiefly in the copper refining industry. The major use of selenium is in the manufacture of electronic components. It is used in several other industries, and selenium compounds are used in some insecticides, in hair shampoos as an antidandruff agent, and as a nutritional feed additive for poultry and livestock. Selenium copper alloys have also been identified as a potential replacement for lead copper alloys in plumbing products. Further information on lead replacements in plumbing products (such as selenium copper alloys) is available in Information Sheet 4.1 – Metal and metalloid chemicals leaching from plumbing products. Selenium concentrations in drinking water source waters are generally very low and depend on local geochemistry, climatic conditions (e.g. drought), pH and the presence of iron salts. Selenium in water is mainly present as inorganic compounds, predominantly selenate. Weathering of rocks and soil may result in low levels of selenium in water, which may be taken up by plants (SLR 2022). Food is the major source of intake for Australians. Cereal and grain products contribute most to intake, while fish and liver contain the highest selenium concentrations.” ADWG 2025
Kalka (South Australia) – Silica
2024/25: Kalka Silica Total 80.4mg/L (max). 2024/25 av. 71.55mg/L
To minimise an undesirable scale build up on surfaces, silica (SiO2) within drinking waters should not exceed 80 mg/L.
GENERAL DESCRIPTION
Silica present in water is usually referred to as amorphous silica (i.e. lacking any crystalline structure). When silica is dissolved within water it forms monosilicic acid:
SiO2 + 2H2O à Si(OH)4
When the concentrations of monosilicic acid increase, polymerisation of the silica occurs, forming polysilicic acids followed by formation of colloidal silica. Monosilicic acid and polysilicic acids are the forms of silica analysed when determining dissolved silica content.
The deposition of silica from solutions can occur via various mechanisms. The deposition of silica that can cause the most problems for the water industry is via silica’s ability to deposit on solid surfaces that have hydroxyl (OH) groups present. Surfaces that commonly have hydroxyl groups present are glass and metallic surfaces. For example, dissolved silica will react with the surfaces of glass and begin to form a white precipitate. The silica forms silicates on the surface, resulting in silica build-up. In cases where customer complaints occur due to scale build-up, water hardness and silica concentrations should be investigated to determine the cause.
Silica can be a problem in water treatment due to its ability to cause fouling of reverse osmosis (RO) membranes (Sheikholeslami and Tan, 1999, Ning 2002, Sahachaiyunta and Sheikholeslami 2002). This occurs when the dissolved silica of the concentrate becomes super-saturated, causing silicates to form in the presence of metals, and these deposit on the membrane surface. The silicate then dehydrates, forming hard layers on the membrane that reduce the effectiveness of the process… 2011 ADWG